

Copyright is held by the author/owner(s).
SPLASH’12, October 19–26, 2012, Tuscon, Arizona, USA.
ACM 978-1-4503-1563-0/12/10.

Generic Adaptable Test Cases for Software Product Line Testing

Suriya Priya R Asaithambi*
School Of Computing; National University of Singapore

suria@nus.edu.sg

Stan Jarzabek
Associate Professor

School Of Computing; National University of Singapore
stan@comp.nus.edu.sg

Summary
This research study is about constructing "generic adapt-
able test cases" to counter test case libraries explosion
problem. Our work focuses on effort reduction via system-
atic reuse of generic test assets by taking advantage of
common aspects and predicted variability in test cases. We
envision that the proposed approach to organizing test case
libraries will be particularly useful in the context of Soft-
ware Product Line Testing (SPLT). By exploring strategies
for generic test cases, I hope to address problems of do-
main-level testing. Our work will investigate existing test-
ing (SPLT) practices in variability management context by
conducting empirical studies. We plan to synthesize princi-
ples for "generic test case" design, identify gaps between
required and exiting techniques, and finally propose new
approach for generic adaptive test case construction.

Categories and Subject Descriptors D.2.13 [Reusable
Software]: Domain Engineering, Reusable Libraries, Soft-
ware Product Line Testing

Keywords Generic adaptable test cases; software product
line testing

1. Motication
“A software product line (SPL) is a set of software-
intensive systems that share a common, managed set of
features satisfying the specific needs of a particular market
segment or mission and that are developed from a common
set of core assets in a prescribed way” [SEI Definition
(McGregor 2001)]. SPL is a family of systems designed to
take advantage of their common aspects and predicted
variability.

The essence of Software Product Line (SPL) (Pohl,
Böckle et al. 2005) approach is to systematically analyze
system variants and build so-called SPL core assets from
which system variants can be developed and maintained in
cost-effective way. Test cases form an important part of
SPL core asset. Further, testing of core assets is considered
critical because a fault within certain functionality can
spread over thousands of products which reuse this func-
tionality. Thus, it is important to prioritize and thoroughly

test SPL core assets by taking advantage of reusability.
In (Myers 2011) single system development, testing

consumes between 35% and 50% of the development costs.
In SPL context, testing core assets is a challenge. SPL
testing (SPLT) is executed at two levels namely: domain
and application testing. Domain testing is responsible for
the validation and verification of reusable components
(SPL core assets). Properties validated at the core asset
level would also apply to system variants, eliminating the
need to re-test them for individual system variants. The
challenge is to test parameterized software components
without instantiation. Thus domain testing has many open
challenges. Application testing will reuse the test assets
created from domain testing heavily; it focuses on testing
individual products with all needed variability bounded to
appropriate product variant choices.

Our work focuses on test effort reduction through the
systematic reuse of generic test assets by taking advantage
of product line common aspects and predicted variability.
As generic test cases reflect properties of SPL core assets,
by exploring strategies for generic test cases, I hope to
address problems of domain-level testing.

2. Problem Description
In single system engineering, test artifacts [Ref: IEEE
1998] are deliverables from the testing process. Test arti-
facts can be classified as non-executable artifacts (such as
test plans, test model, test strategies and test reports) and
executable artifacts (such as test cases, test data sets and
test scripts). A test case typically validates whether certain
aspect of system specification is correctly realized in the
implementation. Result is a verdict (pass or fail) docu-
mented inside test result report. In SPL domain testing
context, test plan enumerates testing activities, elicits plan
for effort/resource consumption and importantly selects
which common and variable test cases are to be executed
based on accumulated variants information. The test sum-
mary report includes additional information such as variant
description, its relation to test cases and a classification
(domain or application defect). Thus test plan and test
summary reports are less impacted by variability manage-
ment in comparison to test cases.

Derivation of test case for core assets product families
is difficult owing to presence of variability. Each variation

33

point presents multiple behaviours to be tested. Industry
projects can easily incorporate thousands of variable fea-
tures and configuration parameters. With continuous evolu-
tion of projects, features gets added, modified and removed
over time – maintenance of such test case libraries is a
research problem worth investigation. In domain testing the
key challenge is to test unbound variant points. In applica-
tion testing the challenge is testing correct binding of vari-
ant points against selected product.

For example, if SPL contains 16 feature variants, then it
is theoretically possible to derive 216 = 65536 variant com-
binations. Thus even a small number of feature variants can
results in combinatorial explosion of variants. Combinato-
rial explosion of test case libraries is caused by the need to
test individual variants. This need can be reduced if we
could exploit the fact that test cases for different product
variants are similar, in the same way as respective products
are similar.

The example shown above is a simple acceptance test
written in selenium tool for testing a particular scenario

inside Firefox browser. Similar test are used to ensure
compatibility for other browsers. Maintaining this test case
as multiple copies is complicated. SPLT artifacts comprises
of representation such as natural language, programming
language and scripting language. Thus managing variants
among SPL Test artifacts using a language neutral mecha-
nism is a key success factor.

Generic adaptive test case design attempts to directly
exploit the fact that test cases for system variants form
groups of similar test cases. Our design promotes parame-
terization techniques for building generic, reusable and
modifiable generic test cases. For example, replace the
driver variant point above with appropriate frame
<<Browser>>. The mechanism complements and extends
mechanisms supported by SPL’s programming language.

From literature survey on SPLT, limitations of current
approaches are: (1) Existing approaches are more focused
on non-executable test artifacts. (2)There is no formal clas-
sification of test artifacts in terms of nature of variability.
(3)Very few specific techniques are available for executa-
ble test artifacts.

2.1 Motivating research questions (RQs)
RQ1: How to save time and increase productivity using
generic test artifacts? In SPL Variation points are often
source of faults. Testing all variants of SPL core assets a
priori is usually impossible for all but the simple cases.
Formulating effective "generic test cases" that would
minimize efforts and increase productivity is essential.

RQ2: How do we assemble generic test artifacts, that
tests commonalities and preserve variation in domain
testing? The study (Engström and Runeson 2011) high-
lights need for new techniques addressing variability pres-
ervation and commonality testing. The study also reveals a
trend in increase of test automation recently.
RQ3: How is generic test artifacts managed at different
levels and phases? Our research will focus on generic test
case construction parallel to core asset creation and before
application engineering.

The intent of our research work is to propose a new ap-
proach that avoids combinatorial explosion via use of ge-
neric adaptive (domain) test cases that preserves variability.
Related Work

2.2 Summary of current generic test cases research:
• Kolb and Muthig (Kolb and Muthig 2006) discuss the

importance and complexity of testing a SPL and com-
ponent based systems. They promote the need for ge-
neric test cases.

• McGregor (McGregor 2001) creates generic test cases
from the use-case scenarios. The variability combina-
tion is resolved using orthogonal arrays technique.

• For legacy systems, (Geppert, Li et al. 2004) obtained a
family of generic test cases by generalizing(using deci-
sion tree) existing (or new) test cases driven by the pa-
rameters of variation of the commonality analysis.

• In model driven SPLT (Reuys, Kamsties et al. 2005),
state chart describes a generic test case with variant
point as Boolean expression.

• CAFÉ project (Bayer, Flege et al. 1999) presents a
method called ScenTeD (Scenario based Test Deriva-
tion for product family testing) that addresses generic
test cases with respect to system and integration testing.
It supports the derivation of generic test case from re-
quirements and architecture information at the domain
engineering level.
Thus current research lacks language neutral techniques

to address generic test case. The understandings and
challenges are well established. But contibutions are either
ideas or partial implementations targeted on specific
modeling language or notations. Research (Engström and
Runeson 2011) shows that empirical evaluations are sparse
in the context of industrial projects.

3. Proposed Work
Our proposed technique works in two steps. The first step
is to analyze and craft appropriate generic test case arti-
facts. Additional inputs inferring the type of core asset and
nature of variant points are provided to help choosing suit-
able mechanism(s). The outcome will be a ‘generic test
case specification’ constructed preserving the variations
present. The second step is to derive product specific test
cases from the generic test artifacts with appropriate varia-
tion points being bound.
Our approach primarily contributes to the first step of con-
structing generic adaptive test cases as shown in figure 1.
The novelty of our approach is that generative technique we

public class OpenHomePage {
 . . .
 WebDriver driver = new FirefoxDriver();
 driver.get("http://www.mycompany.com/home");
 WebElement query = driver.findElement(By.name("q"));
 . . .
}

Example: Acceptance test for firefox browser

34

propose being language/application/domain independent.
Our approach can manage variations, propagating changes
across all the artifacts. Singular mechanisms have their own
merits and limitations and handles only one type of vari-
ability. Such mechanisms are simple, cost-effective and
work well only for small feature sets. In reality, test arti-
facts are complex to be dealt using single technique. There
are customizations at file level, domain level and method
level. Thus mixed techniques are more appropriate.

3.1 Generic Test Cases under Study
Test cases approaches could be black-box or white-box

and implementation could be manual or automated. We
select two kinds of test case specifications and provide
relevant techniques for generic test case. (1) Unit Testing:
conducted by developer on individual code components,
usually automated white box testing. (3)Acceptance Test
conducted by business user on final product, usually man-
ual and black box testing.

4. Methodology

Literature survey involved intensive review of journals,
proceedings, projects, and Internet resources related to the
SPLT literature. The main research idea in product lines
testing is to reuse test case and related artifacts throughout
the entire product lines instead of testing every application
as an independent software product. It is therefore, impor-

tant to create proper testing artifacts in SPL as core assets
using reuse principles.

Our research study is planned to be conducted in three
phases. Phase one: Conduct empirical studies identified
sets of test artifacts. Observe different types of variability
occurring in domain testing, document the variant point
representation and draw conclusion regarding generic test
artifacts possiblity. Phase two: Classify and propose possi-
ble variability management techniques for different test
artifacts. Propose a systematic method that identifies test
case clones, understands the nature of variability and treats
with mixed-strategy based reuse approach. The generic
adaptive test cases will be built and maintained using gen-
erative reuse technique. Phase three: Evaluate the approach
in qualitative and quantitative ways, by conducting con-
trolled experiment. Discuss its strengths and weaknesses.

The following are needful activities: (1) Define research
question (2) Detailed Literature Study: to find out what is
already known before trying to answer research goal. (3)
Create Theoretical Model to conceptualize the problem
stated in research question. (4) Identify possible open
source projects. Perform initial empirical studies and iden-
tify research gaps. Depending on gaps, one research
method will be selected [RQ2]. (5) The researcher injects
practices directly into pilot project and observes before and
after reactions. Data is collected with research instrument,
for example test artifacts review [RQ3]. (6) Conclusions
can be drawn statistically or analytically. Consideration
will be given to reliability, validity and threats to validity
(internal, external) [RQ1].

References
[1] Bayer, J., O. Flege, et al. (1999). PuLSE: a methodology to

develop software product lines. Proceedings of the 1999
symposium on Software reusability. New York, NY, USA.

[2] Engström, E. and P. Runeson (2011). "Software product line
testing – A systematic mapping study." Information and
Software Technology.

[3] Geppert, B., J. Li, et al. (2004). Towards Generating
Acceptance Tests for Product Lines. Software Reuse:
Methods, Techniques, and Tools. J. Bosch and C. Krueger,
Springer Berlin, Heidelberg.

[4] Kolb, R. and D. Muthig (2006). Making testing product
lines more efficient by improving the testability of product
line architectures. Proceedings of the ISSTA 2006 workshop
on Role of software architecture for testing and analysis.
New York, NY, USA, ACM.

[5] McGregor, J. (2001 & 2010). "Testing a Software Product
Line" Software Engineering Institute.

[6] Glenford J. Myers, Corey Sandler, Tom Badgett (2011).
"The Art of Software Testing." John Wiley andSons.

[7] Pohl, K., G. Böckle, et al. (2005). Software Product Line
Engineering: Foundations, Principles, and Techniques,
Birkhäuser.

[8] Reuys, A., E. Kamsties, et al. (2005). Model-Based System
Testing of Software Product Families. Advanced
Information Systems Engineering. O. Pastor and J. Falcãoe
Cunha, Springer.

Variant Bind
 & Test

Combinatorial
Generation of
Configurations

Feature
Models

Typical Product
Test Case

Reusable
Generic
Test Case
Specification

Test Cases for
Configuration
1

Test Cases for
Configuration
n

SPL Core Assets

Figure 2: Overview of our contribution

Figure 1SPLT Generic Test
Case Generation

35

