
Repeatability and Benefaction in Computer Systems Research

—

A Study and a Modest Proposal

University of Arizona TR 14-04

Christian Collberg collberg@gmail.com

Todd Proebsting proebsting@cs.arizona.edu

Alex M Warren amwarren@email.arizona.edu

February 27, 2015

Abstract

We describe a study into the extent to which Computer Systems researchers share their
code and data and the extent to which such code builds. Starting with 601 papers from ACM
conferences and journals, we examine 402 papers whose results were backed by code. For 32.3%
of these papers we were able to obtain the code and build it within 30 minutes; for 48.3% of the
papers we managed to build the code, but it may have required extra effort; for 54.0% of the
papers either we managed to build the code or the authors stated the code would build with
reasonable effort. We also propose a novel sharing specification scheme that requires researchers
to specify the level of sharing that reviewers and readers can assume from a paper.

1 Introduction

Reproducibility is a cornerstone of the scientific process: only if my colleagues can reproduce my work
should they trust its veracity. In the wet sciences reproducing someone’s experiment can be difficult,
often involving expensive laboratory equipment and elaborate processes. In applied Computer
Science, however, this should seldom be so: unless esoteric hardware were used, reproducing the
work published in a systems conference or journal should be as simple as going to the authors’
website, downloading their code and data, typing “make,” and seeing if the results correspond to
the published ones.

Anecdotally, this is not so. In our own experience we have multiple times contacted the authors
of a particularly interesting paper, asked for source code, either to be met with a negative response
or stone cold silence. We present two such anecdotes in Appendix A. It is our belief, and the beliefs
of many [10, 21, 28], that not sharing ones work with fellow researchers hampers the progress of
science and leads to needless replication of work and the publication of potentially flawed results.

In order for Computer Science research to be reproducible, several hurdles have to be cleared: the
source code and test case data have to be available, the code has to build, the execution environment
has to be replicated, the code itself has to run to completion, and accurate measurements (with
respect to performance or other metrics) have to be collected. In this paper we concentrate on the
two most basic of these requirements: is the source code available, and does it build?

Not only researchers themselves, but the agencies who fund them and, ultimately, the general
tax-paying public, have an interest in research being reproducibible and research artifacts being

1

collberg@gmail.com
proebsting@cs.arizona.edu
amwarren@email.arizona.edu

freely shared. The government’s newfound interest in the state of reproducible science is demon-
strated by this recent request for comments put out by the White House [9]:

Given recent evidence of the irreproducibility of a surprising number of published scien-
tific findings, how can the Federal Government leverage its role as a significant funder
of scientific research to most effectively address the problem?

1.1 This Study

To investigate the extent to which Computer Science researchers share their code and data, and
the extent to which this code will actually build with reasonable effort, we performed the following
study. We downloaded 601 papers from the latest incarnations of eight ACM conferences (AS-
PLOS’12, CCS’12, OOPSLA’12, OSDI’12, PLDI’12, SIGMOD’12, SOSP’11, VLDB’12) and five
journals (TACO’9, TISSEC’15, TOCS’30, TODS’37, TOPLAS’34), all with a practical orientation.
For each paper we determined whether the published results appeared to be backed by code or
not. Next, we examined each such paper to see whether it contained a link to downloadable code.
If not, we examined the authors’ websites, did a web search, examined popular code repositories
such as github and sourceforge, to see if the relevant code could be found. In a final attempt,
we emailed the authors of each paper for which code could not be found, asking them to direct us
to the location of the source. In cases when code was eventually recovered, we also attempted to
build and execute it. At this point we stopped—we did not go as far as to attempt to verify the
correctness of the published results.

The details of how this study was conducted can be found in Section 3 and the outcomes can
be found in Section 4. Our conclusion is not to blame authors for an inability to share code—
we discovered many cases where such sharing was made impossible by licensing or commercial
constraints. Similarly, our intent is not to blame authors for instances when we were unable to
build their code—we discovered that research software often have complicated dependencies on
specfic versions of external libraries, compilers, and other software, and sometimes require domain
expertise to build and operate. Rather, our study is investigative in nature; our goal is to find out
the extent to which researchers share their code, the effort required to build such codes, and to
propose procedures to improve sharing and, hence, repeatability, in Computer Systems research.

Related work, described in Section 2, falls in three categories: some authors describe the steps
that need to be taken in order to produce research that is truly reproducible; some authors describe
tools and websites that support the publication of reproducible research; and some authors propose
licensing frameworks that ensure that researchers who willingly share their artifacts will receive
propper attribution. Our recommendations (detailed in Section 5) are more modest. We recognize
that, as a discipline, we are a long way away from producing research that is always, and completely,
reproducible. But, in the interim, we can require authors to conscientiously inform us of their intent
with respect to publishing their code and data: will it be made available, how will it be made
available, in what form will it be made available, on what platforms will it run, what support will
be provided, etc. We believe this information should be provided by the authors when their work
is submitted for publication, allowing reviewers to account for the expected level of reproducibility
in their decision to accept or reject.

Thus, this paper makes the following contributions: we describe a process for determining the
level of weak repeatability in Computer Systems research (Section 3), we describe the outcome of
a repeatability study of 601 papers published in top ACM conferences and journals (Section 4),
and we make a recommendation for adding sharing specifications to publications that represent a
contract between authors and their readers as to the promised level of sharing (Section 5).t

2

All the code and data from this project can be downloaded from our website1.

1.2 History of this Document

The first version of this document [7] was placed on our web site around December 10, 2013, along
with the raw data collected from our study. This was done in order to support a journal submission
of a shorter version of the technical report. Though never publically announced, the existence of
our study leaked to the community, and resulted in sprited discussions on social media platforms
such as Facebook and Twitter. We also received direct feedback from authors over email.

While most of the feedback was supportive of the goals of the study, much critique was directed
at the methodology we employed. In particular, there was a feeling that restricting the student
workers to 30 minutes to build each downloaded software package was too limiting. A common
argument was that such a short time is unreasonable for software written in a research setting and
that “your students should have tried harder.”

While we do not necessarily agree with this argument (many of the packages we downloaded
did build cleanly out-of-the-box, and it is unclear to us why, as a community, we should have lower
standards than that), it was clear that some of our negative results were the consequence of the
inexperience of our student workers2 and the limited time and direction they were given by us. We
therefore embarked on Phase 4 of the study (Phase 1-3 being download and analyze papers, send
email requests to authors, and build and run the code under a tight time constraint), and hiring
new students, and engaging the services of a post doctoral scholar, giving them “unlimited” amount
of time to try to build and more hands-on direction. This process proceeded over the summer and
fall of 2014.

In parallel with this fourth phase of the study, a group of independent researchers set out to
verify our results, through a crowdsourced effort3. Their effort, and ours, essentially attempted the
same task: we both revisited our failed builds from Phase 3 of the study.

To further verify the data we collected, in the fall of 2014 we distributed a questionnaire to all
authors, asking them to comment on the data we gathered about their paper. We call this Phase
5 of the study.

This revised document reflects the Phase 4 and 5 efforts. We have also made many minor
changes throughout the document. For example, to reflect the terminology put forth by Vitek and
Kalibera [30], we have replaced “reproducibility” with “repeatability.”

1.3 Definitions

In Computer Systems, research is typically carried out by building a system, running experiments
over a set of benchmarks, measuring certain properties (such as performance, energy use, etc.), and
publishing the results. We say that this research is repeatable [30] (see Figure 1) if you are able
to run the same system, under the same environment, on the same benchmarks, with the same
methodology, and are able to verify that you get the same results:

Definition 1 (Vitek [30]) Repetition is the ability to re-run the exact same experiment with the
same method on the same or similar system and obtain the same or very similar result.

A reviewer, for example, may want to repeat the experiments in a submitted paper before rec-
ommending it for publication, to ensure that, at the very least, the experiments produce the data

1http://reproducibility.cs.arizona.edu.
2As Principal Investigators we, of course, take full responsibility for the study.
3http://cs.brown.edu/~sk/Memos/Examining-Reproducibility

3

http://reproducibility.cs.arizona.edu
http://cs.brown.edu/~sk/Memos/Examining-Reproducibility

Experiments
!

• Methodology
• Environment
• Benchmarks

PublicationProperties

System

Experiments
!

• Methodology
• Environment
• Benchmarks
}System

Properties}
Verify

System

Experiments
!

• Methodology
• Environment
• Benchmarks

A

B

Figure 1: Repeatability. A builds a system, runs experiments on the system (using a particular
methodology, in a particular computing environment, using a particular set of benchmarks), mea-
sures a set of properties (time, space, energy, etc.), and prepares the results for publication. B
runs the same system, on the same experiments, in the same environment, in order to verify the
properties in the paper.

presented in the paper. Similarly, a reader might repeat the experiments if he finds the published
data suspicious.

A test for reproducibility [30] (see Figure 2), on the other hand, is carried out after publication,
by running different experiments on a different system, and getting results that verify the claims
in the original paper:

Definition 2 (Vitek [30]) Reproducibility is the independent confirmation of a scientific hy-
pothesis through reproduction by an independent researcher/lab. The reproductions are carried out
after a publication, based on the information in the paper and possibly some other information,
such as data sets, published via scientific data repositories or provided by the authors on inquiry.

In practice, in Computer Systems, so many choices are made in the design and implementation of
the system that never make it into the published paper, that completely understanding the claims
and arguments in the paper without access to the original system may be impossible.

Benefaction (see Figure 3), finally, is to share research artifacts with your colleagues, in order
for them to use it in their own work, to make new discoveries:

Definition 3 Benefaction is the avoidance of needless replication of work in order to better ad-
vance scientific progress.

In addition to sharing code, benefaction can also include the sharing of benchmarks and data sets,
etc.

4

Experiments
!

• Methodology
• Environment
• Benchmarks

PublicationProperties

System }
Different

Experiments
!

• Methodology
• Environment
• Benchmarks

New System

Properties}
Verify
Claims

What are the
Claims?

A

B

Figure 2: Reproducibility. B builds a different system than A, and runs different experiments, in
a different environment using a different set of benchmarks, collecting a different set of properties,
using these properties to verify the claims made in the paper.

Experiments
!

• Methodology
• Environment
• Benchmarks

PublicationProperties

System

Experiments
!

• Methodology
• Environment
• Benchmarks

System }
New

Properties}New System

System
Experiments

!
• Methodology
• Environment
• Benchmarks

System

A

B

Figure 3: Benefaction. B uses the system (and benchmarks, etc.) originally produced by A to
build his own system. The motivation for A’s and B’s systems, and the properties they derive from
them, may be completely different.

5

1.4 Weak Repeatability

When you set out to measure the rate of repeatability in a scientific community, the definitions
above are not precise enough. Not only do you need a definition that resonates with the community
that is being measured but also one that is practical enough to collect data given the resources at
your disposal. Even minor changes to the definition are likely to affect the outcome of the study.

For the purposes of this study, we defined three measures of what we have come to call weak
repeatability:

Definition 4 (Weak Repeatability) Let

• BC be the number of papers whose results are backed by code;

• OK≤30 be the number of systems our research assistants successfully built in ≤ 30 minutes;

• OK>30 be the number of systems our research assistants built in > 30 minutes;

• OKAuth be the number of systems for which our research assistants were unable to build the
system, but the author says the code builds with “reasonable effort.”

Then

Weak repeatability rate A =
OK≤30

BC

Weak repeatability rate B =
OK≤30 + OK>30

BC

Weak repeatability rate C =
OK≤30 + OK>30 + OKAuth

BC

Weak repeatability A measures the extent to which code builds more or less out-of-the-box. In
30 minutes, our research assistants were able to unpack the code, follow directions in a README
file (if provided), download and install compilers and libraries (if obvious from the README file),
and resolve minor issues such as removing hardwired paths in makefiles. Weak repeatability A
models scenarios where limited time is available to examine an artifact, and when communicating
with the author is not possible. A reviewer of a conference paper examining a submitted research
artifact is one example.

Weak repeatability B models situations where ample time is available to resolve issues, but the
lead developer of the code is no longer available for consultation. The latter turns out to be quite
common: we saw situations where the student responsible for development had graduated, when
the main developer had passed away, when the authors’ email addresses no longer worked, or when
the authors expressed that they were too busy to provide assistance.

Weak repeatability C, finally, measures the extent to which we are able to build the code or the
authors believe their code builds with reasonable effort. This models the situation where ample time
is available to examine the code, and where the authors are responsive to requests for assistance.

1.4.1 Caveats

Definition 4 leaves out one crucial aspect of repeatability: versioning. In order to repeat the results
in a paper the exact version of the code that was used to produce those results must be available.
In this study, it was often not clear to us whether the code we gained access to was identical to the
code that generated the results in the published paper, or was a later version with bug fixes, etc.

6

In some cases, the authors themselves were also unsure. We therefore leave versioning out of our
definition.

In our study we classified papers as belonging to one of three categories: backed by code, not
backed by code, and requiring non-standard hardware. We only considered papers in the first
category. Thus, Definition 4 only applies to papers whose result is backed by code that runs on
stock hardware.

Definition 4 refers explicitly to our research assistants, who were mostly undergraduates students
of Computer Science or Engineering at the University of Arizona, and who also included one Mas-
ter’s student of Electrical and Computer Engineering and one Postdoctoral Researcher. Whether
someone is able to resolve issues that come up when building a particular piece of software is depen-
dent on their general abilities, their background and training (specifically, their familiarity with the
operating system, programming language, programming environment, and build system assumed
by the software), and their previous experience with this particular type of software. Thus, the
results presented in this report have to be taken in context not only of how the study was carried
out, but also by whom.

We initially considered including executability in the definition, i.e. we wanted to see if we could
not only build the code but also run it. However, during the study we often found that it was not
possible for us to determine the cause of a program crash: it could be because of internal issues,
because the program was invoked with the wrong arguments, or because a file was missing, etc.
Without being familiar with the actual use of the software—which our research assistants were
not—it is not easily determined whether a program runs properly or not. For this reason, we leave
executability out of the definition.

2 Related Work

In this section we review some of the prior work related to reproducibility. In particular, we
examine previous studies into reproducibility, tools for supporting reproducible research, and legal
and licensing frameworks.

2.1 Empirical Studies into Reproducibility

In this paper we conduct a comprehensive study into the extent to which Computer Systems
researchers will share their code with colleagues. Two similar studies have been conducted in
the past. In 2007 Kovacevic [17] examined 15 papers published in the IEEE Transactions on
Image Processing. She read the papers and rated them on how well algorithms were explained and
whether code and data were available. She found that while all algorithms had proofs, none had
code available, and 33% had data available.

Vandewalle et al. [29] distinguish 6 levels of reproducibility, starting at level 5 where “The
results can be easily reproduced by an independent researcher with at most 15 min of user effort,
requiring only standard, freely available tools (C compiler, etc.)”, to level 4 where “proprietary
source packages (MATLAB, etc.)” are required, down to level 0 where “The results cannot be
reproduced by an independent researcher.” They then repeated the study from Kovacevic [17] with
a larger sample size, all the 134 papers published in IEEE Transactions on Image Processing in
2004. Each paper was scored on its reproducibility by two or three reviewers. They found that
“code (9%) and data (33%) are only available online in a minority of the cases, with data being
available more often thanks to the frequent use of standard image data sets, such as Lena.”

While the Kovacevic and Vandewalle studies consider many aspects of reproducibility, such as
whether algorithms (subjectively) are described clearly enough to be independently implemented,

7

our study focuses entirely on whether code and data are made available. We also consider a larger
sample size (601 papers) and a larger number of journals and conferences (13). We furthermore
attempt to actually build and execute the source and contact the authors of code not found on
public repositories to see if they would provide it when asked directly.

Stodden [26] reports on a survey of 638 registrants at the NIPS machine learning conference
as to their willingness to reveal code, data, and ideas. The survey showed that 74% were willing
to share post-publication code, and 67% post-publication data. In contrast, Stodden found that
“30% of respondents shared some code and 20% shared some data on their own websites.” The
most common reasons for not sharing code were found to be “The time it takes to clean up and
document for release,” “Dealing with questions from users about the code,” “The possibility that
your code may be used without citation,” “The possibility of patents, or other IP constraints,” and
“Competitors may get an advantage.”

2.2 Public Repositories of Code and Data

Stodden et al.’s [27] RunMyCode web site4 provides “computational infrastructure” allowing au-
thors to publish the code and data related to their papers. In addition to making code and data
available for download, the site also allows users to execute the code in the cloud. Unfortunately,
the “if you build it they will come” paradigm does not always work: so far (November 2014) only 82
papers appear to have been registered on the site, none of them in the Computer and Information
Sciences category. ResearchCompendia5, the open source version of RunMyCode, has a total of
235 artifacts registered (November 2014).

Gavish and Donoho [11] describe a system whereby data and scripts are stored on (journal)
web repositories, and every computational result (tables, figures, charts, datasets, etc.) is given
a Verifiable Result Identifier (VRI). VRIs are included directly into the article source, allowing
reviewers and readers to interact with the scripts and data (verifying results, examine data, re-
execute computations) without having to explicitly download anything. Gorp and Mazanek [13]
describe a similar system, called SHARE, a web site that allows authors to share remote virtual
machines that contain a complete execution environment, code, data, and the paper text itself.
Readers can click on links in a paper to connect to these virtual machines where they can interact
with computational artifacts. Using VMs to ensure reproducibility is an attractive proposition since
it allows code and data to be bundled with the exact versions of operating system and libraries
with which experiments were run [22]. However, it comes with its own problems, such as how to
perform accurate performance measurements, and how to future-proof computations: for how long
will there exist VM monitors that will run my VM image, and for how long will it be safe to run
an image that contains an operating system and applications to which security patches have not
been applied?

Paper Mâché [6] is yet another system that supports the executable paper6 concept, also using
virtual machine technology to replicate the execution environment in which scientific computations
were run.

CARMEN [5] (Code, Analysis, Repository and Modelling for e-Neuroscience) is a web based
portal which allows users to share code and data in neuroscience.

Koop et al. [16] describe a provenance-based system that captures workflows, i.e. exact histories
of how data was captured, experiments performed, and results were generated. Similarly to the
systems described above, clicking on a plot in a paper will open up the original workflow from which

4http://RunMyCode.org.
5http://researchcompendia.org.
6http://www.executablepapers.com.

8

http://RunMyCode.org
http://researchcompendia.org
http://www.executablepapers.com

Table 1: Outcome of Artifact Evaluations.

Venue Accepted Papers Submitted Artifacts Accepted Artifacts

ESEC/FSE 2011 [1] 34 ? 7
ECOOP 2013a 29 9 8
OOPSLA 2013b 50 21 18
ESEC/FSE 2013 51 22 12
SAS 2013 [2] 23 22 11 ?
ISSTA 2014c 36 9 7
HSCC 2014d 29 ? 5
ECOOP 2014 [14] 27 13 11
OOPSLA 2014 ? ? ?
PLDI 2014 [3] 52 20 12

aErik Ernst, personal communication.
bhttp://evaluate.inf.usi.ch/artifacts/aea/statistics
cMilos Gligoric, personal communication.
dhttps://sites.google.com/site/hscc2014repeatability/home/results

it was generated. Additionally, the system described by Koop et al. integrates version control so
that authors can revert to previous versions of data and code.

Muller et al.’s [4] A-R-E (Author-Review-Execute) environment provides similar facilities as in
the systems described above, but also provides anonymization during the review process. The idea
is to place an anonymizing proxy between the reviewer and the author’s web service that provides
access to data and code.

2.3 Processes, Procedures, and Publication Practices

Schwab et al. [23] describe how to use make and related tools along with naming conventions for
input and generated files to ensure that readers as well as authors can reproduce computations.

Lepton [18] is a literate programming system that makes papers self-contained, by integrating
code and data within the paper itself. Gentleman [12] presents a similar idea based on literate
programming, specifically for the R language.

Limare [19] describes experiences gained from editing the journal Image Processing On Line
where “Each article contains a text describing an algorithm and source code, with an online demon-
stration facility and an archive of online experiments. The text and source code are peer-reviewed
and the demonstration is controlled.” In particular, he points out the risk of obsolescence of code
stored in the repository, as programming languages and libraries change over time.

Several conferences run an “artifact evaluation process” independently of the paper submission
evaluation.7 Table 1 summarizes the outcome of the process for the 10 conferences that participated
during the years 2011–2014. For example, in the first instance of the PLDI conference that included
an artifact evaluation, PLDI 2014, the conference accepted 52 papers. Of these, 20 submitted
artifacts for evaluation, and of these, 12 were classified as “above threshold.”8 Since only accepted
papers may submit an artifact, the outcome of the artifact evaluation cannot influence whether a
paper is accepted or not. The evaluation is typically carried out by PhD students and postdocs
(22, in case of PLDI 2014).

7http://www.artifact-eval.org.
8http://pldi14-aec.cs.brown.edu.

9

http://evaluate.inf.usi.ch/artifacts/aea/statistics
https://sites.google.com/site/hscc2014repeatability/home/results
http://www.artifact-eval.org
http://pldi14-aec.cs.brown.edu

2.4 Licensing Frameworks

Stodden [24, 25] has proposed “The Open Research License” to incentivize researchers to share
their code and data without fear that their work will be expropriated by others, without proper
attribution. Her licensing scheme combines the Creative Commons license9 for the media portion
of the research and the BSD10 license for the code portion. The hope is that universal use of such
licensing schemes will “encourage reproducible scientific investigation, facilitate greater collabora-
tion, and promote engagement of the larger community in scientific learning and discovery” by
ensuring “each scientist is attributed for only the work he or she has created” [24].

2.5 Reproducibility vs. Repeatability

In this paper we examine what we call weak repeatability, the extent to which computer code used
to create the research results in published papers can be located, and the extent to which it builds.
While access to buildable code is a prerequisite for an attempt at repeating the work, such a study
is, of course, a far cry from an actual attempt at reproducing the work. It was been shown, across
many disciplines, that attempts at reproducing well-known results often fail. Such studies appear
to be less common in Computer Science than in other disciplines, but we mention here work by
Klein et al. [15] who, through formal modeling and mechanized reasoning, found mistakes in nine
papers published in the ICFP 2009 proceedings.

3 Process

Figure 4 shows the process by which our study was conducted. It was carried out in five phases:
download and analyze papers to find the location of any related code, email authors in cases where
code could not be found, attempt to build and run the code under a tight time constraint, attempt
to build and run the code without a time constraint, and survey the authors to validate the results
of the study. These phases are described in detail below.

3.1 Study Design Goals, Constraints, and Ethics

At the beginning of the study we identified multiple potential issues related to bias and ethics:

Author bias. An author who is aware of the fact that they are taking part in study on repeatability
might either be less likely to respond to email requests for artifacts (because responding would
be seen as a waste of time), or more likely to respond (so as not to look bad).

Longitudinal bias. The skills of investigators will improve over time. Thus, artifacts that are
examined towards the end of the study period might be treated better than similar artifacts
examined early on.

Investigator bias. The more outrageous the results of this study (i.e. the fewer artifacts that
could be located and built) the more interesting it is, and the more likely it is that the results
will lead to a publication in a prestigious venue. Thus, there is an inherent risk of investigators
favoring negative results over positive ones.

9http://creativecommons.org/licenses.
10http://opensource.org/licenses/BSD-3-Clause.

10

http://creativecommons.org/licenses
http://opensource.org/licenses/BSD-3-Clause

Commercial?

no
response

research

repeatable

Non−

research

repeatable

Non−

evidence

Anecdotal

builds 1? builds 2?

no
response

response
or late

research

repeatable

Non−

resolve issues
Issue survey,

resolve issues
Issue survey,

runs?
Record

resultsresearch

Repeatable

evidence

Anecdotal

ASPLOS’12, CCS’12, OOPSLA’12, OSDI’12,

PLDI’12, SIGMOD’12, SOSP’11, VLDB’12,

TACO’9, TISSEC’15, TOCS’30, TODS’37,

TOPLAS’34

no yes

no no

yes yes

Theoretical/HW

"yes"

"no" "no"

"yes"

no

yes yes

no

2nd email?

no

yes

Practical

by code?

Results backed

Links to code

http://...

http://...

Download

code

Source code

paper? web? 1st email?

Download

papers

Build and

execute

Scan

manually

Search for

link to code

Search for

other data

NSF support?

Figure 4: Process by which the study was performed.

11

Author workload. Since the study is asking authors to provide their artifacts under (somewhat)
false pretenses, it is unethical to require them to expend an inordinate amount of time on
tasks which, to them, have no value.

Deceitfulness. While it is essential to hide the existence of the study while it is ongoing, it is at
the same time unethical to outright lie to authors about why their artifact is being requested.

Privacy vs. repeatability. A study that advocates the sharing of research artifacts cannot hide
its own artifacts from the public. However, since this study deals not only with artifacts,
but also the researchers who created them, it is important to take the privacy needs of the
authors into account when deciding what to make public.

Student repercussions. Since we recognize that this study has the potential for becoming con-
troversial, it is essential to isolate the student research assistants who carry out much of the
work from any possible negative consequences.

In addition to issues of bias and ethics, the study also had to contend with very real resource
constraints. A study such as this requires extensive use of human labor and we were constrained
both with respect to monetary and human resources.

To avoid author bias and minimize author workload, we sent a single request for code, and one
remainder if the first request received no response. Neither request revealed that it was sent as
part of a repeatability study. To avoid finding ourselves in a situation where we had to make a
choice between being untruthful and revealing the existence of the study, we consciously did not
enter into a conversation with the authors, such as making requests for missing files or asking for
help when a build failed. In addition to severely taxing our resources, such conversations would
inevitably lead to the authors asking what we wanted to do with their code; a question we must
answer truthfully, and this would have lead to the investigation being outed.11

We furthermore hypothesized that we would get different response rates depending on who
sent email requests for code: a faculty member, a graduate student, an undergraduate student,
a citizen outside academia, etc. We briefly considered sending the emails from a fake identity,
such as a graduate student for whom we had created a department home page and LinkedIn and
Facebook accounts, but rejected this idea as being unethical. In the end, all emails were signed by
Collberg using an email address similar to, but not identical to, his own (ccollberg@gmail.com
vs. collberg@gmail.com), and identified him as being from the University of Arizona. We do not
know if any author bias resulted from these choices.

Avoiding longitudinal bias turned out to be difficult. Ideally, to minimize such bias, tasks should
be assigned randomly to investigators. However, given our limited resources we chose not to do so,
but rather gave each student the tasks they were best equipped to carry out. Clearly the experience
and skill level of the students who carried out the investigation, and how tasks were assigned to
them, affected our results.

To avoid investigator bias, we made a conscious effort of keeping the potential for such bias in
the forefront of our minds and, whenever appropriate, deciding in favor of the authors (“their code
builds”).

Before commencing the first four phases of the study, we communicated (verbally) with a
representative of the University of Arizona’s Institutional Review Board (IRB). We were informed
that our study did not need further action. Before sending out the author survey (see Section 3.6)
we again investigated whether IRB approval would be necessary. We filled out the University of

11Even with this proviso we received at least one query asking what we planned to do with the code we requested.
We answered vaguely, but truthfully.

12

ccollberg@gmail.com
collberg@gmail.com

ARTICLE:ANALYSIS_BY[name]

ARTICLE:ANALYSIS_TIME[minutes]

ARTICLE:COMMENT[string]

ARTICLE:COMMERCIAL_EFFORT[none ,part ,full]

ARTICLE:GRANT_SUPPORT[none or string]

ARTICLE:NSF -SUPPORT[none or number]

ARTICLE:IMPLEMENTATION_EXISTS[unknown ,hardware ,yes ,no]

ARTICLE:LINK[url]

ARTICLE:NSF -SUPPORT[none or number]

ARTICLE:PAGE_COUNT[pages] 21

ARTICLE:STATUS[not_finished ,finished]

ARTICLE:TYPE[conference ,journal ,poster ,abstract]

AUTHOR:EMAIL_REAL[list of strings]

AUTHOR:NAMES[list of first_last]

BIBTEX:LABEL[string]

BIBTEX:LINK[url]

BUILD:ANALYSIS_BY[name]

BUILD:ANALYSIS_TIME[minutes]

BUILD:BENEFIT_OF_DOUBT[unknown ,yes ,no]

BUILD:COMMENT[string]

BUILD:ERROR_COMMENT[not_needed ,comment]

BUILD:STATUS[one of {unknown ,needed ,not_needed ,started ,finished} and list of {downloaded ,compiles ,runs}]

BUILD:VERIFY_BY[name]

BUILD:VERIFY_COMMENT[string]

BUILD:VERIFY_STATUS[needed ,not_needed ,started ,finished]

BUILD:VERIFY_TIME[minutes]

EMAIL1:CODE_AVAILABLE[yes ,no,no_response]

EMAIL1:REMARK[comment]

EMAIL:STATUS[unknown ,not_needed ,not_found or list of {needed ,request_1 ,response_1 ,sent_thank_you }]

PI:COMMENT_CC[string]

PI:COMMENT_TP[string]

TOOL:NAME[string]

TOOL:ARTICLE_LINK[unknown ,none ,url ,broken and url]

TOOL:GOOGLE_LINK[unknown ,none ,url ,broken and url]

TOOL:EMAIL_LINK[unknown ,none ,sent_no_url ,url ,broken and url]

TOOL:DATA_LINK[unknown ,none ,url ,broken and url]

VERIFY:ANALYSIS_BY[name]

VERIFY:STATUS[unknown ,needed ,not_needed ,started ,finished]

VERIFY:COMMENT[string]

Figure 5: Textual form for the data collected for a paper.

Arizona’s Office for Responsible Conduct of Research Human Subjects Protection Program Form
F309 which was then reviewed by a colleague in another department. It was concluded that IRB
approval would not be necessary.

We decided to publish all the raw data from the study on our web site, and for each paper
include the title, author names, results, and author feedback. Without this information there
would be no way for the community to check our results. Email responses that were included in the
technical report were anonymized, however, since the respondents had a reasonable expectation of
privacy when responding to our messages.

To protect the student research assistants as much as possible, their contributions were anonymized
(i.e. their names were removed from data files such as shown in Figure 5) prior to uploading them
to our web site. Furthermore, they never communicated with authors under their own names.

3.2 Phase 1: Paper Analysis

In an initial step, each paper from the selected conferences and journals were downloaded from
the ACM Digital Library or directly from the conference web site. The papers were next scanned
manually by a team of undergraduate and graduate research assistants to determine if the results
reported on were in any way backed by source code. Purely theoretical papers or papers that
relied on hardware not available to us were not considered further. Keynote addresses, panels, and
demonstrations where also excluded from further analysis. The resulting set of papers consisted

13

Figure 6: Editor to enter data during the study.

14

From: Christian Collberg <ccollberg@gmail.com >

To: first-or-corresponding-author

Cc: remaining-authors

Subject: Your conference-name paper

Dear Dr. first-or-corresponding-author ,

I’ve been looking at your conference-name paper

paper-title

and would like to try out the implementation. However ,

I haven ’t been able to find it online. Would you please

let me know how I can obtain the source code so that I

can try to build and run it?

Thank you very much for your help!

Christian Collberg

ccollberg@gmail.com

Department of Computer Science

University of Arizona

Figure 7: First email.

mostly of full research articles (9 pages or more in length), but a few were shorter (2-4 pages),
which included posters and abstracts from a doctoral symposium.

An attempt was next made to find links to any source code from the article body and bibli-
ography. If no link was found, or if the paper contained a dead link, a web search was carried
out via Google and popular code repository sites such as GitHub, Google Code, and SourceForge.
Search queries combined the tool name and fields such as institute name, author name, and other
keywords. If the institution or the authors had public web pages related to the project, those pages
were considered as well.

In order to ensure accurate results, each paper was reviewed by two research assistants. In
addition, random papers were further selected to be reviewed by a professor, to monitor the quality
of the analysis and reviews. To further facilitate data entry and reduce the risk of erroneous data,
a special data entry editor was developed, shown in Figure 6.

3.3 Phase 2: Email Requests

If no link to source code was found online or in the article itself, an email was sent to the authors
to request access to the code. The emails had the structure shown in Figure 7. In order to
avoid messages being flagged as spam or making the recipient suspicious as to the motive behind
the emails, papers were removed from consideration so that the resulting set had no overlapping
author lists. If no response was received within a few weeks, a reminder email was sent, shown in
Figure 8.

Our emails were sent out in two batches, around June 19, 2013, and October 9, 2013. We did
not accept responses after December 9.

In the following cases we marked a paper as ”code not available:”

15

From: Christian Collberg <ccollberg@gmail.com >

To: first-or-corresponding-author

Cc: remaining-authors

Subject: RE: Your conference-name paper

Hi!

Sorry for bothering you again!

Can you please let me know if this implementation is available ,

and from where I can obtain the code?

Thanks!

Figure 8: Reminder email.

• when the authors only made partial code available;

• when the authors only made binary releases available;

• when the authors promised they would “send code soon,” but we didn’t hear anything further;

• when the authors asked us to sign a license or non-disclosure agreement;

• when the authors requested author credit for any follow-up work; and

• when the authors sent us code more than two months after the original email request.

3.4 Phase 3: Fast Build

Each paper for which source code was found was assigned to one of the student research assistants.
The code was usually tested under the newest Ubuntu environment, unless specified otherwise by
instructions accompanying the source code. Java-based code was tested under Windows 7. Each
build was given 30 minutes of programmer time (excluding download and install time) to complete.
If, at the end of the 30 minutes, unresolved make or compilation errors remained, the system was
marked as “did not compile.” If the system compiled but did not run, it was classified as “compiles
but does not run.” Finally, if a build executed without errors, it was marked as “runs.” No attempt
was made to verify whether the system produced results consistent with the claims made in the
original paper.

Given that the papers selected for analysis cover a wide variety of topics and circumstances,
some papers did not fit nicely into the build process and required additional attention.

For example, one paper provided an entirely online implementation that executes with some
errors. We marked that paper as “compiles but does not run.” Another paper provided an API as
a tool, and requires C++ to call and use. This was deemed to be out of the scope of the research.
There were other papers that were out of scope as well. For example, one tool required installing a
custom-provided operating system on an Android device to run, and another required downloading
and modifying images for Android systems to run. In all such cases, we gave the authors the benefit
of the doubt, and marked the paper was “compiles and runs.”

16

Although often unclear, we assumed that the code we found was the version that produced the
results in the paper.

A small number of systems had online implementations and thus did not need to be compiled.
We marked these as “builds.”

Overall we found these kind of occurrences to be rare and as such did not significantly impact
the results of the study.

3.5 Phase 4: Extensive Build

If a code failed to build during Phase 3, we made a second attempt without setting an artificial
time limit. Here, we made use of one undergraduate Computer Science student, one undergraduate
Electrical and Computer Engineering student (mostly in an administrative role), and one postdoc-
toral researcher in Computer Science. We furthermore held weekly meetings where failed builds
were discussed, communal debugging was engaged in, and further approaches were suggested. Only
when all investigators agreed that they could see no further avenues of attack did we cease the effort,
and the program was marked as “does not build.”

3.6 Phase 5: Author Survey

After Phase 4 was completed we sent emails to all authors who were part of the survey asking
them to help verify the data we had gathered. Authors of papers that were removed in Phase 2 (to
ensure none-overlapping author lists) were excluded. We were particularly interested in whether

• we had classified the papers correctly,

• we had found the correct code,

• we had found the version of the code that corresponded to the results in the papers, and

• the authors themselves thought the code ought to build.

Figure 9 shows the email request that was sent out. Appendix C shows the survey questions.
Section 4.4 discusses the feedback we received from the survey.

In response to the survey results we embarked on the final stage of the study. There were three
major issues that we had to resolve:

1. In cases where we had misclassified a paper as “not backed by code” and the authors gave
us access to code, we downloaded it and tried to build it, using the same process as before.
Similarly, if our web searches had turned up the wrong code, and the authors provided a
correct link, we downloaded and built this code.

2. In cases where it was clear from a survey response that there had been a misunderstanding
between us and the authors, we communicated with them in order to clear up the problem.

3. In cases where the authors provided solutions to build issues we had had we did not attempt
to build the code again. Rather, we recorded the fact that the authors said that the code
would build.

Figure 10 shows the email we sent to authors to request code in reply to their survey response.

17

From: Christian Collberg <ccollberg@gmail.com >

To: author

Subject: Repeatability Study: Your paper-venue Paper

Dear author ,

Over the last year we have conducted a study into the extent to which

Computer Systems researchers share their research artifacts , and

whether published code builds. Your paper-venue paper ,

paper-title

was part of this study. In fact , you may have received an email

from us asking for code related to your paper , or you might

have come across our website

http:// reproducibility.cs.arizona.edu

or even read our (very preliminary) technical report

http:// reproducibility.cs.arizona.edu/v1/tr.pdf.

In our study we looked for code related to papers published in ACM

conferences and journals , and , if found , tried to build it. For your

paper , we found that

* the paper is 1. PRACTICAL (i.e. backed by code)
2. THEORETICAL (not backed by code)
3. HARDWARE (requires special hardware to reproduce)

*

 1. the code could be found online at link-to-code
2. we received the code in an email from you

3. no code could be located
* we were{

1. able
2. unable

to build the code.

The complete data we collected for your paper can be found here:

http:// reproducibility.cs.arizona.edu/v2/# this-paper

The following document explains the data schema:

http:// reproducibility.cs.arizona.edu/format.txt

To make sure that our results are as accurate as possible , we would

appreciate it if you would answer a very short online questionnaire

related to the data we collected about your paper:

https://www.surveymoz.com/s/124740 RHYUP?x= unique-ID

Please complete this survey by September 21, 2014.

Note that this is not an anonymous survey. Rather , your response

to the questionnaire can be attributed to you. Also note that if your

paper has multiple authors , each author will get a copy of this email ,

with a unique code that ties their response to them. Thus , each author

can provide us with a different response.

We very much appreciate your help ,

Christian Collberg

Todd Proebsting

Figure 9: Survey email.

18

From: Christian Collberg <ccollberg@gmail.com >

To: all-authors

Subject: RE: Repeatability Study: Your paper-venue Paper

Dear authors!

Thank you for responding to our survey!

The main purpose of the survey was to be able to correct any

mistakes in our repeatability study. In the case of your paper ,

1. we failed to follow up on your original email

response, and so your paper was erroneously

classified as "code-does-not-exist".

2. you point out that we found the wrong code!

3. it was tagged as "not-backed-by-code" which, as

you point out, was a misclassification.

We would be very grateful if you could send us the code that

was used to create the results in your paper , so we can attempt

to build and run it , and include the results in our study.

Thank you very much for your assistance ,

Christian and Todd

Figure 10: Email to resolve issues in response to survey results.

3.7 Detailed Workflow

Three undergraduate and one graduate research assistant were tasked with downloading and scan-
ning papers for links to code. For each paper the information in Figure 5 was collected. The
research assistants went through the following workflow:

1. Get pdf and basic information:

(a) Look for grant support. Search for the word “grant”, usually at beginning or end of the
paper, possibly in the footnote or acknowledgement sections.

(b) Extract the email addresses of authors.

(c) Determine if any authors come from a commercial entity. Look at authors’ email address
and grant/financial support.

(d) Add a link to article.

2. Look through Abstract/Introduction:

(a) Skim the text to get an idea of what the paper is about.

(b) Find out what a possible tool might be called.

(c) Determine if the paper is backed by an implementation (code).

(d) Search the introduction for a link to code.

3. Search for “git,” “code.google,” “http,” and “ftp” for links to code:

(a) If you find a link in the citations search back for the citation number to see what it is.

19

4. Skim section headings and text for links to code:

(a) Sections named “Implementation” or “Experiments” could have information on the tool.

5. Do a web search:

(a) Search the name of the tool.

(b) Search with relevant keywords.

(c) Search each authors’ homepage and check if they link to the software.

(d) Try to figure out what lab/research group the project belongs to and check the lab’s
website.

(e) If a slide deck related to the paper is found look for links in them (probably at end).

6. Send initial emails:

(a) An initial email needs to be sent if: the paper is backed by code, and no link was found.

(b) Exclude papers so that no more than one email is sent to any author.

(c) Send a reminder email if a response to the first one is not received.

7. Build code 1:

(a) Follow link and download code.

(b) Attempt to build. Install any missing libraries. Fix any broken search paths.

(c) Attempt to run.

(d) Abort after 30 minutes.

8. Build code 2:

(a) Attempt to build again.

(b) Ensure the right versions of operating system, compilers, libraries, and frameworks have
been installed.

(c) Attempt to run.

(d) If no success, consult with others on the project to get ideas on how to proceed, repeat
from (a).

(e) Abort when no more progress can be made.

9. Send survey emails:

(a) Create a unique code for each paper/author-pair.

(b) Send request email to each author, with a link to the survey containing the unique code.

(c) Send a reminder email after a week to the authors of those papers for which no survey
response has been received.

(d) Collect the results.

(e) Resolve issues. In some cases this will require emailing the authors for clarification,
downloading code that was missed, and attempting to build that code, using the same
process as before.

20

601

NC
63

HW
30

508

Article
85

Web
54

EMyes

87

EX
106

226

OK≤30

130
OK>30

64
OKAuth

23

Build
fails

9

176

EMno

146
EM∅

30

Figure 11: Study result. Blue numbers represent papers that were excluded from consideration,
green numbers papers that are weakly repeatable, red numbers papers that are non-weakly repeat-
able, and orange numbers represent papers that were excluded (due to our restriction of sending
at most one email to each author).

10. Notes:

(a) If a link was found through a web search go back and check the paper again to make
sure it was not there.

(b) It can be complicated to determine when there is a larger project of which the current
paper is a subset. In that case the paper may refer to the larger project as though it
were a separate subject when in fact their current code is included with it.

4 Results

Table 2, Figure 11, and Appendix B show the results of the study. Table 4 lists the abbreviations
we use.

Table 2 shows that out of an initial 601 papers, we excluded 30 because they required esoteric
hardware, 63 because the results presented were not backed by code, and 106 in order to avoid
sending multiple email requests to the same author, resulting in a total of 402 papers whose results
were backed by code. Out of these, we found 85 codes through links in the paper itself, 54 codes
through web searches, and 87 codes through email requests. For the remaining 176 papers backed
by code we either got a negative response to our email requests, or no response within two months.

Our results show that for 32.3% of the papers backed by code we were able to obtain the code
and, within ≤ 30 minutes, also build it (weak repeatability A); for 48.3% of the papers we managed
to build the code, but it may have required extra effort (weak repeatability B); and for 54.0% of
the papers either we managed to build the code or the authors stated the code would build with
reasonable effort (weak repeatability C).

21

T
ab

le
2:

S
u

m
m

ar
y

of
th

e
re

su
lt

s
of

th
e

st
u

d
y.

G
ro

u
p

#
C

la
ss

ifi
ca

ti
o
n

C
o
d
e

lo
ca

ti
o
n

B
u
il
d

R
es

u
lt

W
ea

k
R

ep
ea

ta
b
il
it

y
(%

)

H
W

N
C

E
X

B
C

A
rt

ic
le

W
eb

E
M

y
e
s

E
M

n
o

E
M
∅

O
K
≤
3
0

O
K

>
3
0

O
K

A
u
th

F
a
il
s

A
B

C

A
S
P

L
O

S
’1

2
3
6

4
2

7
2
3

2
0

6
1
4

1
4

3
1

0
1
7
.4

3
0
.4

3
4
.8

C
C

S
’1

2
7
5

5
1
4

1
9

3
7

4
4

1
5

1
2

2
1
6

5
2

0
4
3
.2

5
6
.8

6
2
.2

O
O

P
S
L

A
’1

2
7
3

0
1
2

5
5
6

2
9

3
1
0

1
3

1
2
1

1
7

2
2

3
7
.5

6
7
.9

7
1
.4

O
S
D

I’
1
2

2
4

0
0

7
1
7

4
4

2
7

0
7

3
0

0
4
1
.2

5
8
.8

5
8
.8

P
L

D
I’

1
2

4
8

0
1

7
4
0

9
6

1
0

1
4

1
9

1
3

3
0

2
2
.5

5
5
.0

6
2
.5

S
IG

M
O

D
’1

2
4
6

1
0

1
9

2
6

3
6

8
8

1
1
1

3
3

0
4
2
.3

5
3
.8

6
5
.4

S
O

S
P

’1
1

2
7

0
1

6
2
0

3
4

3
9

1
3

3
2

2
1
5
.0

3
0
.0

4
0
.0

T
A

C
O

’9
6
0

1
8

3
2

3
7

7
2

6
1
7

5
8

2
2

3
2
1
.6

2
7
.0

3
2
.4

T
IS

S
E

C
’1

5
1
3

1
6

0
6

3
0

1
2

0
2

0
2

0
3
3
.3

3
3
.3

6
6
.7

T
O

C
S
’3

0
1
3

1
0

0
1
2

3
2

0
5

2
2

3
0

0
1
6
.7

4
1
.7

4
1
.7

T
O

D
S
’3

7
2
9

0
1
2

2
1
5

1
3

3
3

5
6

1
0

0
4
0
.0

4
6
.7

4
6
.7

T
O

P
L

A
S
’3

4
1
6

0
5

2
9

7
1

1
0

0
4

4
0

1
4
4
.4

8
8
.9

8
8
.9

V
L

D
B

’1
2

1
4
1

0
7

3
0

1
0
4

1
0

1
9

2
2

4
2

1
1

3
7

7
6

1
3
5
.6

4
2
.3

4
8
.1

T
o
ta

l
6
0
1

3
0

6
3

1
0
6

4
0
2

8
5

5
4

8
7

1
4
6

3
0

1
3
0

6
4

2
3

9
3
2
.3

4
8
.3

5
4
.0

N
S
F

2
5
2

1
1

1
5

5
7

1
6
9

3
6

2
5

4
3

5
4

1
1

5
5

3
1

1
4

4
3
2
.5

5
0
.9

5
9
.2

N
o

N
S
F

3
4
9

1
9

4
8

4
9

2
3
3

4
9

2
9

4
4

9
2

1
9

7
5

3
3

9
5

3
2
.2

4
6
.4

5
0
.2

A
ca

d
em

ic
4
0
9

2
0

4
7

6
4

2
7
8

6
6

4
3

6
9

8
1

1
9

1
0
2

5
1

2
0

5
3
6
.7

5
5
.0

6
2
.2

In
d
u
st

ri
a
l

4
4

2
8

6
2
8

6
0

2
1
7

3
4

2
2

0
1
4
.3

2
1
.4

2
8
.6

J
o
in

t
1
4
8

8
8

3
6

9
6

1
3

1
1

1
6

4
8

8
2
4

1
1

1
4

2
5
.0

3
6
.5

3
7
.5

C
o
n
fe

re
n
ce

s
4
7
0

1
0

3
7

1
0
0

3
2
3

6
4

4
6

7
6

1
1
9

1
8

1
0
8

5
4

1
9

5
3
3
.4

5
0
.2

5
6
.0

J
o
u
rn

a
l

1
3
1

2
0

2
6

6
7
9

2
1

8
1
1

2
7

1
2

2
2

1
0

4
4

2
7
.8

4
0
.5

4
5
.6

22

Table 3: Build error summary.

error count percentage

distribution is missing files 12 19.4%
prerequisite failed to build 2 3.2%
unavailable environment 3 4.8%
other errors 15 24.2%
incomplete documentation 11 17.7%
missing third party package 8 12.9%
build:error comment[not needed,comment] 2 3.2%
runtime error 9 14.5%

Total 62

internal compiler error: Compilation terminated with the message “In-
ternal Compiler Error.”

unavailable environment: The build failed due to an unavailable version
of a particular piece of software, compiler etc.

missing third party package: A particular piece of software, package or
tool required to run the build was not found.

distribution file is missing: The author did not make available files that
should be part of the build, such as a missing header file or a missing
file with input data to run the code.

incomplete documentation: Documentation necessary to build the soft-
ware is incomplete or missing.

runtime error: The code compiles and fails to run, due, for example, to a
segmentation fault or a runtime exception.

prerequisite failed to build: A pre-requisite for a tool could not be suc-
cessfully built by the team in under 30 minutes.

other errors: The error could not be categorized.

The types of build errors encountered can be found in Table 3.

4.1 Does NSF Funding Affect Sharing?

The National Science Foundation’s (NSF) Grant Policy Manual12 states that

b. Investigators are expected to share with other researchers, at no more than incre-
mental cost and within a reasonable time, the primary data, samples, physical
collections and other supporting materials created or gathered in the course of

12http://www.nsf.gov/pubs/manuals/gpm05_131/

23

http://www.nsf.gov/pubs/manuals/gpm05_131/

Table 4: Abbreviations used in Table 2, Figure 11, and Appendix B.

Notation Number of papers. . .

BC where the results are backed by code
NC excluded due to results not being backed by code
HW excluded due to replication requiring special hardware
EX excluded due to overlapping author lists
EMyes where the author provides code after being emailed
EMno where the author responds to email that code cannot be provided

EM∅ where the author does not respond to email requests within 2 months

OK≤30 where code is available and we succeed to build the system in ≤ 30 minutes
OK>30 where code is available and we succeed to build the system in > 30 minutes

OKAuth where code is available, we fail to build, but the author says the code builds
with reasonable effort

Fails where code is available, we fail to build, and the author says the code may
have problems building

work under NSF grants. Grantees are expected to encourage and facilitate such
sharing. [. . .]

c. Investigators and grantees are encouraged to share software and inventions created
under the grant or otherwise make them or their products widely available and
usable.

d. NSF normally allows grantees to retain principal legal rights to intellectual property
developed under NSF grants to provide incentives for development and dissemi-
nation of inventions, software and publications that can enhance their usefulness,
accessibility and upkeep. Such incentives do not, however, reduce the responsi-
bility that investigators and organizations have as members of the scientific and
engineering community, to make results, data and collections available to other
researchers.

Even so, we see no significant difference in weak repeatability rates between those authors who are
supported by the NSF and those who are not.

4.2 Does Industry Involvement Affect Sharing?

Unsurprisingly, papers with only authors from industry have a low rate of weak repeatability, and
papers with only authors from academia have a higher than average rate. The reasons why joint
papers also have a very low rate is not immediately obvious: the industrial partner might have
imposed intellectual property restrictions, the research could be the result of a student’s summer
internship, etc.

Does the Right Version Exist? From the responses we received from authors, we noticed that
published code does not always correspond to the version that was used to produce the results in the
corresponding paper. To see how common this is, in our author survey we asked “Is your published
code identical to the version that you ran to get the results in the paper (ignoring inconsequential

24

bug fixes)?” It is encouraging to see that out of the 177 responses to this question, 83.1% answered
“yes”, 12.4% answered “No, but it is possible to make that version available”, and only 4.5%
answered “No, and it is not possible to make that version available.”

4.3 Reasons Why Code Cannot be Shared

The email responses we received were generally pleasant, apologetic if code could not be provided,
and accomodating. Below are a few representative examples of emails from authors who turned
down our request.

4.3.1 Versioning Problems

Version problems appear to be a major obstacle to repeatable research. In most cases we could not
determine if the code we downloaded corresponded to the version in the paper, and often, neither
could the author:

Thanks for your interest in the implementation of our paper. The good

news is that I was able to find some code. I am just hoping that it is

a stable working version of the code, and matches the implementation

we finally used for the paper. Unfortunately, I have lost some data

when my laptop was stolen last year. The bad news is that the code is

not commented and/or clean. So, I cannot really guarantee that you

will enjoy playing with it.

Attached is the 〈system〉 source code of our algorithm. I’m not

very sure whether it is the final version of the code used in our paper,

but it should be at least 99% close. Hope it will help.

4.3.2 Code Will be Available Soon

Many responses we received indicated that the code corresponding to the published paper was too
bad to be released, that new code was being worked on, and once done, we could get access to the
cleaned up system:

Thank you for your interest in our work. Unfortunately the current

system is not mature enough at the moment, so it’s not yet publicly

available. We are actively working on a number of extensions and

things are somewhat volatile. However, once things stabilize we plan

to release it to outside users. At that point, we would be happy to

send you a copy.

While the authors should be commended for eventually making their code available, it should be
pointed out that for repeatability, such delayed releases are unacceptable: it will never be possible
for a reviewer or reader of the paper to verify the results that are actually presented in the paper.

25

4.3.3 No Intention to Release

A few authors acknowledged that they never had the intention to make the code available:

I am afraid that the source code was never released. The code was never

intended to be released so is not in any shape for general use.

4.3.4 Programmer Left

In some cases, the one person who understood the system left:

〈STUDENT〉 was a graduate student in our program but he left a

while back so I am responding instead. For the paper we used a

prototype that included many moving pieces that only 〈STUDENT〉
knew how to operate and we did not have the time to integrate them in

a ready-to-share implementation before he left. Still, I hope you can

build on the ideas/technique of the paper. Regards,

4.3.5 Bad Backup Practices

In one case, the system physically ceased to exist:

Thanks for your interests in this paper. Unfortunately, the server in

which my implementation was stored had a disk crash in April and three

disks crashed simultaneously. While the help desk made significant

effort to save the data, my entire implementation for this paper was

not found. I do have reports generated by the tool for

〈SYSTEM〉. If you are interested in these reports, I can send

them to you. Sorry for that.

4.3.6 Commercial Code

Research done by employees of commercial entities were often not able to release their code

Since this work has been done at 〈COMPANY〉 we don’t open-source

code unless there is a compelling business reason to do so. So

unfortunately I don’t think we’ll be able to share it with you.

but sometimes the author added a helpful suggestion:

The code owned by 〈COMPANY 1〉, and AFAIK the code is not open-source.

Your best bet is to reimplement :(Sorry.

26

4.3.7 Proprietary Academic Code

Even university researchers at universites had licensing issues

Thank you for the interest in our 〈CONFERENCE〉 contribution.

Unfortunately, the 〈SYSTEM〉 sources are not meant to be opensource

(the code is partially property of 〈UNIVERSITY 1〉,
〈UNIVERSITY 2〉 and 〈UNIVERSITY 3〉.)

In particular, while there is interest, I do not have the liberty of

making available the source code at my current institution

(〈UNIVERSITY 4〉).

If this will change I will let you know, albeit I do not think there

is an intention to make the 〈SYSTEM〉 sources opensource in the

near future.

or put restrictions on the release of the code:

Thanks for your interest.

We haven’t yet open-sourced the software, but we are making a collaboration

release available to academic partners.

If you’re interested in obtaining the code, we only ask for a description of

the research project that the code will be used in (which may lead to some

joint research), and we also have a software license agreement that the

University would need to sign.

4.3.8 Industrial Lab Issues

Industrial labs walk a thin line between producing publishable research and research which is
relevant for their parent company:

27

The short answer is we can’t share what did for this paper. We

appreciate that this is not in the academic tradition, but this is a

hazard in an industrial lab.

The slightly longer answer is that the implementation is set of

discrete pieces rather than a whole system. There are legal hazards

around what we have:

- Some code of the implementation is custom modifications to the

〈SYSTEM〉 source tree and in places that current policy would absolutely

forbid sharing. As researchers, there is some tension between

implementing stuff on the companies platform in the hope it might

influence the product groups and implementing on simpler systems which

would turn the product groups off. Ultimately the product groups

sponsor our employment.

- There is also code that contains IP covered under NDA with the

hardware manufacturer.

There would not be much left on the table in this instance that we

could get past legal review and have value to the outside world.

If you were interested in experimenting with a system with 〈HARDWARE〉,
〈COMPANY1〉 are shipping dev boards and have a custom Linux

kernel with support for their product. 〈COMPANY2〉 might also be

shipping boards now, but I’ve not heard anything in this regard.

4.3.9 Unavailable Subsystems

Some systems were built on top of other systems which were either not publically available

We implemented and tested our sparse analysis technique on top of a

commercialized static analysis tool. So, the current implementation

is not open to public. Sorry for this.

or obsolete:

Currently, we have no plans to make the scheduler’s source code

publicly available. This is mainly because 〈ANCIENT OS〉 as such

does not exist anymore, and as a result installing this OS on new

hardware is a bit troublesome; not to mention how tedious it is to

prepare a new machine for OS development under a discontinued version

of 〈ANCIENT OS〉 such as the one we used (official package

repositories no longer exist). Although some researchers asked us to

disclose the source code, we strongly believe that the efforts to make

the code available and fully documented now are not worth it since few

people would manage it to get it to work on new hardware.

28

4.3.10 Multiple Reasons

Sometimes, there were multiple reasons why not to release the code, including licensing, bad code,
and reliance on other systems:

Sorry we haven’t released our code because it is too hard to maintain.

A large part of our code contains/relies on the code from other tools

(probably old versions), such as 〈LONG LIST OF SYSTEMS〉. It

would require huge amount of effort to make our code work with the

latest versions of these tools. We are not using the code at

〈COMPANY 1〉 or 〈COMPANY 2〉 so we didn’t spend time on

maintaining it. Besides, we cannot release our code with the tools in

one package since they are protected by licenses.

4.3.11 Intellectual Property

Some authors were worried about how their code might be used:

... I hope the above will be proved of help. If these suggestions are not

helpful in your efforts, we could provide our implementation but please

kindly note that:

- We won’t be able to provide further support in a timely manner. Of

course, installation instructions and initialization parameters will

accompany the implementation

- We would like to be notified in case the provided implementation will be

utilized to perform (and possibly publish) comparisons with other developed

techniques. If this is indeed the case, please note that we would prefer to

look into the extracted results and be able to comment on the comparison

results before their publication.

The reason for the second provision is that, based on earlier (bad)

experience, we would like to make sure that our implementation is not used

in situations that it was not meant for. For instance, in this particular

case, our code has not been optimized for speed, so it makes no sense to use

it for performance measurements over streaming data. In other words, we

would like to have some say on how our code is used, especially if the

results are to be used in a paper submission.

4.3.12 Research vs. Sharing

Producing artifacts which are solid enough to be shared is clearly labor intensive, and one researcher
explained how he had to make a draconian choice:

29

Thank you for your email to 〈STUDENT〉, expressing interest in our work.

Since giving you 〈system〉 would necessitate us also giving you our complex

Simulation infrastructure, which has been developed over a lot of

years by a large number of my former and current PhD students, he knew

that I would want it forwarded it to me for answering.

Our simulator is very complex, and continues to become more complex

as more PhD students add more pieces to it. The result is that without

a lot of hand holding by senior PhD students, even our own junior PhD

students would find it unusable. In the past when we attempted to share

it, we found ourselves spending more time getting outsiders up to speed

than on our own research. So I finally had to establish the policy that

we will not provide the source code outside the group.

On the other hand, 〈STUDENT〉 would be very happy to answer any questions you

have about 〈SYSTEM〉 if you decide to implement it on your own simulation

infrastructure. In fact, both 〈STUDENT〉 and I would welcome that opportunity.

For us, in fact, it would show that the ideas in 〈SYSTEM〉 can be validated on

another Simulator developed by an outside group. Feel free to take 〈STUDENT〉
up on this offer if you wish.

I wish you success in your undertakings and hope that 〈STUDENT〉’s help

understanding 〈SYSTEM〉 will be a win-win for us both.

4.3.13 Security and Privacy

Unlike those working in other fields, Computer Security researchers have to contend with the
possible negative consequences of making their code public:

Thanks for your interest. However, we have an agreement with the 〈BUSINESS-
ENTITY〉 company,

and we cannot release the code because of the potential privacy risks to the general

public.

4.3.14 Design Issues

Design and implementation choices can affect whether the resulting program is useful to others:

The code used to implement the 〈CONFERENCE〉 paper is

complete, but hardly usable by anyone other than the authors. This is

due in large part due to our decision to use 〈OBSCURE LANGUAGE VARIANT〉 for the

input language. The error messages which are produced by the compiler

are useless to anyone not fluent in both 〈LANGUAGE〉, 〈SYSTEM〉, and the

compiler architecture.

4.3.15 Too Busy to Help

Some people were too busy to help out understanding the code:

30

Most importantly, I do not have the bandwidth to help anyone come up to

speed on this stuff.

4.4 Feedback on the Study

We received feedback on the study both from authors (as part of their response to the survey)
and from other researchers who heard about the study through other channels. The feedback falls
roughly in three categories:

• Criticism raised against the methodology of the study (“you should have. . . ”);

• Criticism raised against individual results (“anyone competent should be able to build this
code”); and

• Appreciation of the importance and difficulty of code sharing and repeatability.

We reproduce some representative feedback we received below. It should be noted that, in contrast
to the responses we received to our email requests for code (see Section 4.3), the feedback we show
here came from authors who were aware of the existence of our study.

4.4.1 Methodological Issues: “You Should have been More transparent!”

Some authors were unhappy that our email requests for code did not explicitly state the purpose
of the request:

Since you have used us as subjects of your study without our permission, I feel that

I must help you improve your study.

However, as this author points out, had our emails been more transparent, the results might have
been biased:

However, I have some reservations regarding the way you approached the authors in

your first email. I believe the authors had the right to know upfront the actual

reason you were asking the code of their system, so as to decide whether they wanted

to invest the time needed for packaging and submitting their code, especially since

you intended to make your findings publicly available.

4.4.2 Methodological Issues: “You Should have used a Different Measure of Repeata-
bility!”

In this study we measure only the availability of research artifacts, specifically source code, and
whether such shared code will build. This is clearly a very limited precursor to a “real” study
of repeatability (which would require verifying the published results) and reproducibility (which
would require, at the very least, a reimplementation and additional experiments). Several authors
were critical of such a limited investigation. We are inviting our colleagues to conduct more indepth
studies, and we make all materials collected during our study available as a starting point.

31

A 30-minute verification that an author’s code compiles, runs, and prints the

expected output is interesting but is not a convincing test of scientific

reproducibility.

A better test of reproducibility of a publication’s results would be to independently

implement and measure the algorithm or system described. This would be unlikely to

replicate any bugs or systematic measurement errors, increasing the meaningfulness

of a positive reproducibility result. Negative results would also be more likely to

provide technical insight and foster scientific discussion.

There are serious flaws in your methodology that you have failed to recognize. Also,

you should carefully reconsider your view of reproducing results in other fields

(such as physics, astronomy, etc.). In the tech report, your view reads as somewhat

naive, and it misinforms your recommendations for computer science. If you are

interested in discussing further, please let me know.

Our work is useful for researchers working with 〈TOOL1〉, 〈TOOL2〉 etc. Researchers

need to understand how to build/use these tools before they look at our work. We

strongly suggest that your study applies at least the same standards of evaluation as

those used by the ECOOP Artifact Evaluation process.

Would have been nice if the students attempting the build were also saving the

detailed log file of the build and included it when corresponding with the authors.

A repeatability study takes more than clicking on links and running make scripts

or the resulting executables. See for example Casey Klein et al at POPL 2012 for a

repeatability study that went into depth. When we ran this study, we spent almost

two years with one PhD student per case study.

I do not like the way this study was conducted and found the follow-up work from

Brown University more palatable, but I have not followed all the ripples from the

initial "results" closely.

4.4.3 Methodological Issues: “You Should have Asked for Assistance!”

In our study, we decided not to enter into a conversation with the authors, asking for assistance, for
example, when builds failed. Thus, weak repeatability A and B measure the extent to which code
builds out-of-the-box. This is important in several scenarios such as when a reviewer of a conference
paper examines a submitted research artifact, or when the lead developer is no longer available for
consultation. Our measurement of weak repeatability C, however, captures (an approximation
of) the situation where the authors believe their code builds (even if we failed to do so) and are
responsive to requests for assistance.

This process would have gone much more smoothly had the authors interacted with

us. While the second round of results do say that our code builds with some

modifications, a quick not from the authors would have allowed us to fix the issue

and enabled the source to build cleanly.

32

Your ‘validation process’ is, frankly, absurd and therefore provides useless results.

In our case - the version we posted had unnecessary dependency (file) in makefile,

all you had to do is follow the error message and remove it and all would work fine-

or ask us by mail - you did neither.

Besides, you only checked that projects compile; what exactly does it mean that the

project compiles? to really check reproducibility you must validate it by running

and comparing results and functionality. Your ‘test‘ would pass a an "hello, world!"

program... absurd. You wasted more time for us in understanding your useless

‘evaluation‘ and writing such response as this, than you invested in evaluating our

project. A waste of time.

If you’re having trouble building, why not correspond with us? This is not

commercial software; we are academics with limited resources so our testing is

similarly limited. Most of these issues can probably be ironed out with a brief

conversation.

Or ask us by mail.. but you didn’t. and obviously you had no problem finding our

mail. Absurd. We used code of others many times, often dealing with much much more

serious issues without giving it a second thought.

4.4.4 Methodological Issues: “You Should have used the Latest Version!”

Some authors pointed out that newer versions of their system were available and should be used
instead:

As with the last time you folks inspected our software, you appear to be using an

old build. Since April 18, 2014 (nearly 5 months ago), our software has used 〈BUILD
SYSTEM〉 for our build system. Your notes indicate that you tried (and failed) to

use the old Makefile-based build system.

In fact, we have since fixed the issue. If the authors download the new code, it

will build without modification.

In order to test repeatabilty, however, the version of the code that was used to produce the
results in the published paper should be used. We therefore evaluated the code that we found
during the time of our study, not any versions which may have been made available at a later date.

4.4.5 Methodological Issues: “You Should have used the Binary Instead!”

Some authors pointed to the availabilty of a binary version of their system:

If you’re interested in the original version of 〈SYSTEM〉 that was the subject of the

paper, you can sidestep your build problems. We distribute a binary JAR here, which

is the link that you used: 〈URL〉.

While a pre-compiled version of a project can be helpful, we consider being able to read the code,
and connect it back to algorithms in the paper, essential for a full repeatability or reproducibility
examination. Except for a few online implementations, we therefore only accepted papers for which
source code was made available.

33

4.4.6 Methodological Issues: “You Should Sign this License Agreement!”

A few authors were upset that we marked papers for which code was only available after signing a
license or non disclosure agreement as “code not available:”

You should be more diligent in doing these kind of studies: "code not available" is

plain untrue for our work and as pointed out in my email to you on June 25, 2014 this

is an unfair labelling given that we make the code available to anyone willing to

sign an NDA. Your label makes it look like as if we did not respond or are unwilling

to share the code which is simply untrue.

Many conferences (such as OSDI13) will not consider papers accompanied by nondisclosure agree-
ment forms. Similarly, for a conference that requires, or admits, the submission of research artifiacts
along with a paper submission, restrictive license agreements will be problematic. We therefore
marked papers where the authors asked us to sign any sort of license agreement as “code not
available.”

4.4.7 Critique Against Individual Results

Several authors were miffed at our inability to build their code, and pointed out that “any competent
programmer” should be able to work around the problems we encountered.

The errors encountered are not linked to the project or the code added for this paper

but to the simple compilation of the GCC compiler (which is included in the sources

of 〈SYSTEM〉).
Building GCC (which is a very standard tool for development on all platforms) cannot

be considered too complicated in any reasonable result reproduction effort.

I think the build error would be obvious to anyone that’s familiar with building

C/C++ programs, and I don’t think the conclusion of a build failure for this is

legitimate.

From the build notes: 〈URL〉 The first error a few lines in is: 〈...〉fatal error:

google/protobuf/message.h: No such file or directory compilation terminated.

So Google’s protocol buffers library wasn’t found: either it wasn’t installed or

wasn’t at the expected location.

See also how 〈PERSON〉 was able to build the project: 〈link to https://github.com/

shriram/repro-in-cs/...〉

you recieved: g++: error: ControlThread.cpp: No such file or directory

this was due to a minor bug - this file was simply not needed. All you had to do -

and what any competant programmer imho would do - is delete this dependency from the

make-file and see if it compiles (and it does, and we also fixed right away).

We also received positive feedback when we were able to successfully build a system that even
the author agreed was complex:

13https://www.usenix.org/conference/osdi14/call-for-papers

34

https://github.com/shriram/repro-in-cs/...
https://github.com/shriram/repro-in-cs/...
https://www.usenix.org/conference/osdi14/call-for-papers

〈SYSTEM〉 has a ridiculous set of dependencies, and is highly complex to build. I’m

relieved to know you succeeded in getting it to run, albeit with some additional

effort that evidently was not described in the directions.

I believe my response to this question would best be described as, "I believe the

code you downloaded can be build with significant effort." Well done.

Our experimental setup needs several involved steps and not all of them are automated

currently. It requires using several tools and systems that are not widely (or

freely) available such as 〈TOOL1〉, an 〈PLATFORM〉 system for compiling and

disassembling 〈OPERATING SYSTEM〉 binaries, and a cluster of machines to perform

fault injection campaigns. This makes it complicated for us to package it for

release

4.4.8 Reproducibility and Repeatability: “It’s Important!”

Some authors provided thoughtful feedback on the importance of repeatability and reproducibility,
and expressed an interest in our study.

I would first like to mention that I find interesting the data you collected during

your weak repeatability initiative. Moreover, I think it is of great importance

to have repeatable experiments in order to advance the research in our field and to

concentrate on the right problems.

I would like to make clear that we believe you did us a service by pursuing this

question. Like you, I have been on the receiving end of stonewalling, silence,

and maybe even lies when trying to get hold of code from others. Your emails and

Appendix completely resonated with me. We have been pointing this out to people, and

indeed I sense others share it. Eg, there have been some twitter threads just about

the emails.

Great effort! We need more studies like this, please keep up the good work.

It’s a wonderful idea to analyse the repeatability of software and hardware based

papers. But I guess it is a huge amount of work. I sincerely congratulate the team

for investing this effort.

I think it’s fantastic that you have undertaken this comprehensive study.

I found your study on repeatability in Computer System Research a very useful

initiative. I hope it will make more researchers aware of what is needed so that

their results can be reproduced with minimal effort.

Very worthwhile study. Thanks for doing this. I know you caught a lot of flak

for the initial results, but I really appreciate the followup and care that you’ve

taken.

35

This survey is a monumental effort and ultimately of great service to our community,

thank you!

This is a significant project that deserves broad support across the computing

community. There are often perfectly legitimate obstacles to code publishing but

these should become the exception.

Your study on repeatability in computer science research is quite interesting.

Looking forward to see how it will impact the publication process and culture of this

area of engineering.

4.4.9 Reproducibility and Repeatability: “It’s Difficult!”

Some authors provided thoughtful commented on how difficult code sharing can be to achieve
in practice. The problems expressed range from resource constraints when working in academia,
to licensing issues when working in industry, to problems motivating authors to make their code
available when there is no tangible benefit for doing so.

I came across your study entitled "Measuring Reproducibility in Computer Systems

Research" and I found it fascinating. I also particularly enjoyed the Anecdote 2,

which was both hilarious and dramatic.

With several colleagues, I also tried to improve reproducibility in science (mainly

in 〈OTHER FIELD〉 in our case) by creating 〈WEB SITE FOR UPLOADING RESEARCH
ARTIFACTS〉. But to tell the truth, it has been quite frustrating to see the low

adoption rate among 〈RESEARCHERS〉. As you put it in your study: ‘‘the if you build

it they will come paradigm does not always work’’. I could not agree more with your

statement.

Your work on reproducibility in CS is a source of inspiration and motivation for me

and my team and I thank you for that.

All the best with your research.

Publishing or giving out code is easy. The hard part is to find enough resource

to clean it up, make it portable, document it, and support it especially when the

main goal of a project is not to build a widely used open source system but to demo

ideas of a paper. Anyone with large system experience could imagine that there will

be many system specfic hacks, shortcuts, and workarounds in the implementation of

distributed system with many moving parts. For example, we may hard code a storage

path or make some assumptions about access control configuration of the underlying

systems. Such things will definitely not impact the validity of our results. And

they can be smoothed out from the system given enough engineering resouce. Before

that happen, we had to do substantial support work to help people deploy and run our

system in the past several cases.

36

Cool, repeatability is extremely important and strongly in favor even though I

work in the industrial complex. As an industrial engineer, sometimes we can share

stuff and sometimes we can’t. There are no recognition points internally for making

code available or supporting it. Our background is probably no different from most

academics, but we don’t have the same level freedom and are more-regularly assaulted

by performance reviews. We also have an existing portfolio of IP and there are

lawyers who fear releasing code/ideas that pertain broadly to that area may be

invalidating company rights to defend that IP. It is a deal with the devil - the

company pays us to generate valuable IP, have to appreciate they want first dibs and

to protect it.

In your TR you comment on lack of collaboration between industrial research and

academia and pin it on industrial IP. The problem is often the other way around, by

collaborating with academia their IP departments often come after us with completely

unrealistic agreement proposals - the assumption is big company X participated in

this research and they have deep pockets, the research must be worth millions today.

Entering these negotiations is a huge time and cost sink and sours the process. It

is a very naive approach as only 1 in N projects ever reach product in anyway and

a tonne of additional work goes into making this happen. We try to put interns on

projects that do not directly relate to their PhD research to avoid this issue -

and we encourage writing up and publication but not future work after the intern has

left. We do not place any restrictions on the interns being able to talk about what

they’ve worked on or start their own research projects in similar areas after the

event.

In an industrial lab, publication is seen as the easiest activity

researchers/engineers participate in. Research that is good enough for

tier 1 publication may not fit in with the product portfolio or may not be

implementable to the satisfaction of the product teams. Product teams are much

more discerning/dismissive than paper reviewers. The progress scale is roughly (1)

tier 1 publication, (2) getting interest in from a product team, (3) getting your

code in their depot, (4) getting commitment and resources to ship the research, (5)

shipping.

Note that publishing code is also a rather thankless task. Likely outcomes include:

(a) Nobody will look at it and you will have wasted your time. (b) Anyone who looks

at it will see that it perfectly matches the paper’s specification (except for being

MUCH harder to read) and won’t have learned anything. (c) Someone will try to use

it, run into some kind of trouble, and bother you with annoying questions. (d)

Someone will catch some trivial bug, approximation, or limitation and use it to

cast doubt on your results. (e) Some professor will convince a naive first-year

student to use your code as a starting point for their experiments and you will have

contributed to that poor student’s misery and anguish.

Publishing code is often difficult or even impossible for researchers working in

private industry. It can be done in some cases, but it always comes with quite some

legal effort.

37

We aimed in our paper to provide enough information to allow research groups to

reproduce our results, i.e., to reimplement the concepts in our analysis. We believe

that we accomplished this.

We made the code available as a courtesy on request, and were prepared to spend time

and energy enabling interested researchers to replicate and extend our results, i.e.,

to use our code base. We did not aiming to provide a distribution of our code that

works robustly out of the box. While we may aim to do this with future research

projects, it was not an aim of the current work.

4.4.10 Reasons for not Being Able to Share

Similarly to what we saw in Section 4.3, the survey provided additional reasons why sharing some-
times is impossible.

Unfortunately, the author who has done most of the coding for this paper (〈AUTHOR〉)
has passed away and the code is no longer maintained.

As indicated on my webpage, my implementation builds off of another author’s

code, who has since claimed IP rights and refuses to let me publicly release it.

Therefore, I just released the portion of the implementation described in the paper

that I wrote, and to run the code, one would need to re-implement the code written by

the other author.

We are involved in a commercialization effort along this line. So, we are not

planning to release code at this point.

5 Recommendations

As we have seen, there are many ways to improve the state of repeatability and reproducibility
in Computer Systems research. We could simply, as some conferences have done, require that
along with every paper submitted for publication the authors should attach the corresponding
code, perhaps in the form of a virtual machine image. Or, we could build special tools that help
authors produce code that can run reliably and with repeatable results, regardless of the execution
environment. Or, we could build web sites that allow authors to make their code available to
colleagues in perpetuity.

Unfortunately, based on the study presented in this paper, it is our belief that it is currently
not realistic to expect Computer Systems researchers always to make their code available to others
for scrutiny. The reasons for the inability to share code are manyfold: the code may not be clean
enough for public distribution; the authors may be considering commercialization of their work
and would prefer to keep the code out of the hands of competitors; (part of) the code may not be
publishable because of licensing restrictions; the main author may no longer be available to package
up and distribute the code; or the researchers may be too busy to make their code available.

Given that sharing will not always be possible, our proposal is quite modest. Rather than forcing
authors to make their systems available, we propose instead that every article be required to specify
the level of repeatability a reader or reviewer should expect. We will term such a statement a sharing
specification. The sharing specification should be provided in the article header (along with

38

Table 5: Data needed for sharing contracts.

location email address and/or web site (RFC 3986 URI)

resource kind (code, data, media, docs, ...)

availability (no access, access)

expense (free, non-free)

distribution form (source, binary, service)

expiration date (ISO 8601 Date)

license (string)

comment (string)

support level (L1, L2, L3)

expense (free, non-free)

expiration date (ISO 8601 Date)

ρ ∈ {code, data, media, docs, . . .} (resources)
α ∈ {no access, access} (availability)
φ ∈ {source, binary, service} (distribution form)
ξ ∈ {free, non-free} (expense)
τ ∈ ISO 8601 Date (expiration date)
λ ∈ RFC 3986 URI (uri)
π ∈ {L1, L2, L3} (support level)
σ ∈ string (license-string)

res ::= ρ(, ρ)∗ : α[, ξ][, φ][, τ][, σ] ; (sharing)
loc ::= λ ; (location)
sup ::= support : π, ξ[, τ] ; (technical support)
s ::= Sharing loc+ res∗ sup∗ (contract)

Figure 12: Grammar generating sharing specifications.

keywords and classification terms) at the time of submission (allowing reviewers to take repeatability
into account when deciding on whether to recommend acceptance or rejection) as well as in the
camera ready version (allowing readers to know if, and how, to access the relevant code, data, and
other resources). The specification can be construed as a contract between an author and their
reader/reviewer in which (a) the author commits to making available certain resources that were
used in the research leading up to the paper and (b) the reader/reviewer commits to take these
resources into account when evaluating the contributions made in the paper.

5.1 Syntax of Sharing Specifications

In Table 5 we show the data that need to be part of a sharing contract: the external resources
that back up the results in the paper, the locations where these resources can be found or ways to
contact the authors, and the level of technical support the authors will provide. Figure 12 shows
a grammar for one possible sharing specification. Figure 13 gives an example of a paper header
with a sharing specification generated from this grammar.

Resources can include code, data, media, etc. For each resource the specification states if it
will be made accessible to the community, if there is a cost involved in obtaining the resource, an
optional deadline after which the resource may no longer be available, an optional licensing scheme,

39

� �
Keywords

Mobile , Ubiquitous Computing , Sensors

ACM Classification Keywords
H5 .m. In format ion i n t e r f a c e s and pr e s en ta t i on :
Mi sce l l aneous

General Terms
Design Document , Work−in−Progres s

Sharing
mailto:alice@example.com ; http://mobile-project.example.com ;
code : acces s , f r e e , source , Apache 2 . 0 ;
support : L1 , f r e e , pe rpe tu i ty ; support : L2 , non−f r e e ,2014−12−31;� �

Figure 13: Example of paper heading. The sharing section specifies that the paper is backed by
code but no other resources, that the code will be provided for free in source form, that support
will be provided until the end of 2014, and that the code is distributed under the Apache license.

and whether the resource is available in source or binary form or is accessed as a service. Here,
“service” represent any dissemination method that gives a user indirect rather than direct access
to the resource. Examples include programs executing as a web service, media streamed from a
server, or authors guaranteeing that they will run the code by hand, on input data provided by the
user, and then provide them with the resulting output. An absence of an expiration date indicates
the resource will be available in perpetuity.

The support field specifies the level of technical support the authors will provide, for how long,
and whether support is free or not. There are three levels of support: L1 indicates the authors will
resolve issues with downloading, installing, and executing the program; L2 indicates the authors
will maintain the program, fixing bugs, and upgrade as necessary as language specifications and
operating systems evolve; L3 indicates a willingness on part of the authors to port the program to
new environments, improve algorithms and performance, add new features, etc. Multiple support
levels can be specified. An absence of the support field indicates no support is offered. An absence
of an expiration date indicates that support will be available in perpetuity.

For each resource the specification can specify the license under which a resource is provided. An
absense of the license field indicates that the resource is provided under an “anything goes” license.
It should be noted that sharing, as defined in this paper, is different from licensing. The sharing
specification in Figure 12 represents a commitment an behalf of the author of a paper to make
resources available to the wider community for scrutiny. A license, on the other hand, describes the
actions allowed on these resources, such as modification, re-distribution, reverse engineering, etc.
Under some circumstances it is necessary to specify both licensing and sharing. For example, if code
is distributed in binary form only and the license prohibits reverse engineering, the community’s
ability to verify that the actions performed by the software is consistent with what is described
in the publication is diminished. Similarly, repeatability is hampered by code that makes use of
libraries whose license prohibits re-distribution.

40

mailto:alice@example.com
http://mobile-project.example.com

5.2 Example Sharing Specifications

The sharing specification in Figure 12 is designed to handle most common situations, but obviously
represents ta tradeoff between expressiveness and conciseness. Since our hope is that in the future
every paper will contain such a specification, we do not want it to take up too much space nor do
we want writing it to be too onerous. In most cases, authors will find that a very terse specification
will suffice. For a purely theoretical paper, i.e. one not backed by any external resources, the
specification would be simply� �

Sharing
bob@cs.example.edu� �

i.e. it defaults to providing “corresponding author” information. In the common situation where a
paper is backed by code and data, the authors expect to put them both up on their web site, never
taking them down, not providing any support, and not worrying about licensing, the specification
would be � �

Sharing
http://project.example.edu ; code , data : acces s , f r e e , source ;� �

In a situation where the authors are employed by a commercial organization and, as a result, the
code is proprietary and cannot be shared, the benchmarks used are freely shared, and limited
support in how to download, install, and run the benchmarks will be given until the beginning of
2015, the specification would be� �

Sharing
http://project.example.com ; code : no a c c e s s ;
data : acces s , f r e e , source ; support : L1 , f r e e ,2015−01−01;� �

There may certainly be complex situations that cannot be expressed by the grammar in Figure 12,
but these can be handled by the authors providing additional information in a footnote.

5.3 Lessons Learned

From the work that has lead up to this paper, in particular the responses to our email queries, we
have learned the following valuable lessons:

1. Unless you have compelling reasons not to, plan to release the code. It is the right
thing to do, and if you start with this mind-set from the beginning of the project, the amount
of extra work will likely be negligible.

2. Students will leave, plan for it. When building the system keep in mind that the code
should outlive both you and the student.

3. Create permanent email addresses. You and your students will most likely be changing
jobs a few times during your career. While some schools will keep old email addresses around,
or forward email, you cannot count on it. Create email addresses that you know will be
permanent throughout your working life and use them in all professional correspondence.

4. Create project websites. These are more likely to remain functional over time than email
addresses. Put the URL in the paper. Be prepared to upload code and test data to your web
sites at the same time as you upload the paper describing your system to a conference site
for review.

41

bob@cs.example.edu
http://project.example.edu
http://project.example.com

5. Use a source code control system. Whenever you submit or publish a paper, set a label
on the corresponding code version so that you can easily recreate it.

6. Backup your code.

7. Resolve licensing issues. If you anticipate problems start the licensing process early, so
that you are able to release the code at the same time as the paper is submitted for publication.

8. Keep your promises. If your grant application states that you will be sharing code with
the community, plan for keeping that promise.

9. Plan for longevity. Projects may live on for a long time, with many students building on
the code. Plan for this at the onset of the project, by setting up the appropriate directory
structures, plug-in architectures, etc., which will allow the project to grow.

10. Avoid cool but unusual designs. Unless you have a compelling reason to do otherwise,
stay with standard operating systems, programming languages, and tool chains.

11. Don’t rely on the permanence of external software. Don’t expect a particular version
of a library to be available in perpetuity, and don’t expect it to be available at a particular
url. Include, whenever possible, all dependent code in your distribution.

12. Plan for repeatable releases. Use the same techniques that Release Managers in industry
use to ensure consistent and repeatable builds. For example, check in your entire tool chain
(compilers, linkers, libraries, etc.) into your source code control system, and start any release
by building the tool chain from scratch. There is an extra startup cost when beginning a
new project, but this will be paid off over time. It will, for example, make it easier for new
students to join the project.

6 Discussion

As scientists and engineers we are predisposed to tackle what are, fundamentally, societal, psycho-
logical, or economic problems with technological fixes. When we become aware that many scientific
results cannot be easily replicated, we design tools to help researchers store the sequence of events
that make up the recipe for their studies; when we notice that research artifacts are often languish-
ing in obscurity on researchers’ hard drives, we create web repositories where they can be stored
in perpetuity; and, when we suspect that scientific reproducibility might be a serious problem, we
immediately launch into a scientific study (such as this one) to determine just how prevalent the
phenomenon might be.

While there is certainly much room for follow-up studies to this one and technological advances
to help researchers share their artifacts, we must acknowledge that the root of the problem is
sociological, not technological: we do not produce solid ready-to-share artifacts or attempt to
replicate the work of our peers because there is little professional glory to be gained from doing so.
In [20], Brian Nosek writes, “Because of strong incentives for innovation and weak incentives for
confirmation, direct replication is rarely practiced or published” and “Innovative findings produce
rewards of publication, employment, and tenure; replicated findings produce a shrug.”

Thus, the real solution to the problem lies not in sharing specifications, or web sites, or licenses,
or tools for scientific provenance, but in finding new reward structures that encourage us to produce
solid artifacts, to share these artifacts, and to validate the conclusions drawn from the artifacts

42

Table 6: Summary of results from various studies of repeatability and reproducibility.

Reference What/Who was studied What was measured Results

Kovacevic [17] 15 papers published in
the IEEE Transactions
on Image Processing.

How well algorithms
were explained and
whether code and data
were available.

All algorithms had
proofs, 0% had code
available, 33% had data
available.

Vandewalle et
al. [29]

All the 134 papers pub-
lished in IEEE Transac-
tions on Image Process-
ing in 2004.

Reproducibility as mea-
sured by 2-3 reviewers.

9% of the papers had
code available online
and 33% had data.

Stodden [26] Survey responses from
134 registrants affiliated
with American universi-
ties at NIPS conference.

Proportion of regis-
trants comfortable
with sharing post-
publication code on
the web vs. proportion
publishing some code
on their web site.

74% are comfortable
with sharing, 30% have
code on web site.

Table 1 (page 9
of this report)

Artifact evaluation out-
comes for the 268 pa-
pers that were accepted
in the seven conferences
for which we have com-
plete information.

Submitted and accepted
artifacts as a percentage
of accepted papers.

43.3% submitted, 29.5%
accepted.

Klein et al. [15] Formal modeling and
mechanized reasoning
of nine papers published
in ICFP 2009.

Proportion of papers in
which no mistakes were
found.

0%.

This study Examination of 402
Computer Systems
papers backed by code.

Proportion of papers
with shared code, and
the extent to which
shared code builds suc-
cessfully in 30 minutes,
with extra effort, or by
the authors.

56.2% shared, 32.3%
builds in 30 minutes,
48.3% builds with extra
effort, 54.0% builds by
author.

published by our peers. Unfortunately, in this regard we remain pessimistic; we do not see a near
future where such fundamental changes are enacted.

We conclude by discussing the results of our study in the context of other studies of repro-
ducibility and repeatability in Computer Science, and how our sharing specification compare to
previously proposed technological fixes.

43

6.1 Putting it all Together

Any study on repeatability and reproducibility has to be examined in context of the process by
which it was carried out. The results of the study reported on in this paper, for example, depend
on the facts that

• authors were unaware that they were the subjects of a repeatability study;

• our build process was run mostly by undergraduate students with limited experience;

• no attempt was made to communicate with authors during the build process; and

• we measured weak repeatability, rather than repeatability or reproducibility.

To gain a deeper understanding of the state of reproducibility and repeatability, it is illuminating
to examine the outcome of studies that were designed differently from ours. Table 6 summarizes
the results of six repeatability/reproducibility studies.

The first issue that differentiates the six studies is the rate of sharing reported. In Vandewalle
et al.’s [29] study, for example, 9% of published papers had code available, in Stodden’s [26] study,
30% of respondents had code published on their web sites, and in the Artifact Evaluation process,
29.5% of accepted papers had acceptable artifacts submitted. In our study we found that out of
the 402 Computer Systems papers that were backed by code, for 56.2% of them the authors were
able to make that code available.

A second issue is how subjects in the six studies were selected. Stodden’s [26] study, for example,
excludes researchers working in industry and academics outside the United States. Our study makes
no such exclusions since much research in Computer Systems is done in an industrial setting (31.9%
of 601 papers in our study had at least one industrial author). All the studies in Table 6 furthermore
target top publication venues. It is conceivable that sharing rates would be different in second and
third tier venues.

A third issue is the possibility of self-selection bias. The respondents to Stodden’s [26] survey
were aware of the fact that they were part of a study on reproducibility, which may help to explain
the relatively low response rate (23%). Similarly, the high success rate of the Artifact Evaluation
process could be the result of authors self-selecting whether to submit an artifact, or not (while
68.1% of the submitted artifacts were deemed acceptable, only 43.3% of accepted papers had a
submitted artifact). In contrast, the authors of the papers we examined were, initially, unaware of
taking part in a repeatability study. We believe this was indispensable to avoid self-selection bias.
Furthermore, the explanations for why code could not be shared (Section 4.3)—given voluntarily
and without knowledge of how this information might be used—gives fascinating insight into the
issues that stand in the way of universal sharing of research artifacts.

A fourth issue is how to count whether artifacts are shared or not. Stodden [26], for example,
only counts whether authors publish some code on their web sites. Our study shows that not
everyone makes all their code available on their web sites, and that personal contacts matter: for
38.5% of the 226 papers for which we obtained code, the code was acquired through email requests.

6.2 Proposals for Improving Sharing

Table 7 summarizes the different proposals that have been presented for improving the sharing of
code and data. It is our belief that none of them, in isolation, will solve the problems of sharing of
research artifacts, but that, taken together, they will allow us to make strides towards repeatable
and reproducible research: public repositories are necessary in order to ensure long-term availability

44

Table 7: Summary of proposals for improving sharing of research artifacts.

Reference Proposal Description

[4–6,11,13,16,27] Artifact repositories Public repositories of research artifacts;
links in papers to related data and com-
putation allowing readers to verify results,
examine data, and re-execute computa-
tions; virtual machine technology to store
complete execution environments.

[18, 23] Coding conventions Conventions for organizing code and data
to simplify repeatability of results; literate
programming.

[19],
artifact-eval.org

Peer-reviewed artifacts Peer-reviewed code and data accompany-
ing published papers.

[24, 25] Artifact licenses Licensing frameworks to encourage re-
searchers to share their research artifacts
without fear of losing attribution.

This proposal Sharing specifications Authors are required to be transparent
with respect to the level of sharing/re-
peatability a reader or reviewer should ex-
pect.

of artifacts; coding conventions are necessary in order to facilitate the understanding of submitted
code; peer-review of artifacts is necessary in order to ensure the consistency between a publication
and its supporting artifacts; licensing frameworks designed specifically for research artifacts are
necessary in order to ensure that researchers get proper attribution for their work; and sharing
specifications are necessary in order to ensure that readers and reviewers have an understanding of
the level of sharing that is supported.

We believe that, if generally adopted, sharing specification will not only be of informational
value, but will also have a positive effect on the extent to code and data is shared: knowing that
reviewers may take a dim view of a paper whose sharing specification states that code and data
will not be available for review, may serve as an incentive for authors to, whenever possible, share.

Acknowledgments We thank Saumya Debray and Shriram Krishnamurthi for valuable input.
We also thank all the students who worked on this project, as well as the authors who contributed
their time to send us code, and provide feedback on the study.

References

[1] ESEC/FSE ’11: Proceedings of the 19th ACM SIGSOFT Symposium and the 13th European
Conference on Foundations of Software Engineering, New York, NY, USA, 2011. ACM. 594114.

[2] Proceedings of the 20th Static Analysis Symposium. Springer Verlag, June 2013.

[3] PLDI ’14: Proceedings of the 35th ACM SIGPLAN Conference on Programming Language
Design and Implementation, New York, NY, USA, 2014. ACM.

45

artifact-eval.org

[4] W. M. 0001, I. Rojas, A. Eberhart, P. Haase, and M. Schmidt. A-r-e: The author-review-
execute environment. Procedia CS, 4:627–636, 2011.

[5] J. Austin, T. Jackson, M. Fletcher, M. Jessop, B. Liang, M. Weeks, L. Smith, C. Ingram, and
P. Watson. Carmen: Code analysis, repository and modeling for e-neuroscience. Procedia CS,
4:768–777, 2011.

[6] G. R. Brammer, R. W. Crosby, S. Matthews, and T. L. Williams. Paper mch: Creating
dynamic reproducible science. Procedia CS, 4:658–667, 2011.

[7] C. Collberg, T. Proebsting, G. Moraila, A. Shankaran, Z. Shi, and A. M. Warren. Measuring
reproducibility in computer systems research. Technical Report TR 13-03, Department of
Computer Science, University of Arizona, Dec. 2013.

[8] C. S. Collberg, A. Huntwork, E. Carter, and G. M. Townsend. Graph theoretic software
watermarks: Implementation, analysis, and attacks. In J. J. Fridrich, editor, Information
Hiding, volume 3200 of Lecture Notes in Computer Science, pages 192–207. Springer, 2004.

[9] C. A. Dorgelo and J. M. Galloway. Notices. Federal Register, 79(145), July 2014. http:

//www.gpo.gov/fdsys/pkg/FR-2014-07-29/pdf/2014-17761.pdf.

[10] S. Fomel and J. F. Claerbout. Guest editors’ introduction: Reproducible research. Computing
in Science and Engineering, 11(1):5–7, 2009.

[11] M. Gavish and D. Donoho. A universal identifier for computational results. Procedia CS,
4:637–647, 2011.

[12] R. Gentleman. Reproducible research: A bioinformatics case study. Statistical Applications in
Genetics and Molecular Biology, 4(1):1034, 2005.

[13] P. V. Gorp and S. Mazanek. Share: a web portal for creating and sharing executable research
papers. Procedia CS, 4:589–597, 2011.

[14] R. Jones, editor. ECOOP 2014 - Object-Oriented Programming - 28th European Conference,
Uppsala, Sweden, July 28 - August 1, 2014. Proceedings, volume 8586 of Lecture Notes in
Computer Science. Springer, 2014.

[15] C. Klein, J. Clements, C. Dimoulas, C. Eastlund, M. Felleisen, M. Flatt, J. A. McCarthy,
J. Rafkind, S. Tobin-Hochstadt, and R. B. Findler. Run your research: On the effectiveness
of lightweight mechanization. In Proceedings of the 39th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, POPL ’12, pages 285–296, New York,
NY, USA, 2012. ACM.

[16] D. Koop, E. Santos, P. Mates, H. T. Vo, P. Bonnet, B. Bauer, B. Surer, M. Troyer, D. N.
Williams, J. E. Tohline, J. Freire, and C. T. Silva. A provenance-based infrastructure to
support the life cycle of executable papers. Procedia CS, 4:648–657, 2011.

[17] J. Kovačević. How to encourage and publish reproducible research. In IEEE International
Conference on Acoustic Speech Signal Processing, volume IV, pages 1273–1276, Apr. 2007.

[18] S. Li-Thiao-T. Literate program execution for reproducible research and executable papers.
Procedia CS, 9:439–448, 2012.

46

http://www.gpo.gov/fdsys/pkg/FR-2014-07-29/pdf/2014-17761.pdf
http://www.gpo.gov/fdsys/pkg/FR-2014-07-29/pdf/2014-17761.pdf

[19] N. Limare. Running a reproducible research journal, with source code inside. In ICERM
Workshop, 2012.

[20] B. A. Nosek. An open, large-scale, collaborative effort to estimate the reproducibility of
psychological science. Perspectives on Psychological Science, 7(6):657–660, 2012.

[21] Y. L. S. R. on Data and C. Sharing. Reproducible research. Computing in Science and
Engineering, 12(5):8–13, 2010.

[22] S. Perianayagam, G. R. Andrews, and J. H. Hartman. Rex: a toolset for reproducing software
experiments. In Bioinformatics and Biomedicine (BIBM), 2010 IEEE International Confer-
ence on, pages 613–617. IEEE, 2010.

[23] M. Schwab, N. Karrenbach, and J. Claerbout. Making scientific computations reproducible.
Computing in Science Engineering, 2(6):61–67, 2000.

[24] V. Stodden. Enabling Reproducible Research: Open Licensing for Scientific Innovation. Social
Science Research Network Working Paper Series, Mar. 2009.

[25] V. Stodden. The legal framework for reproducible scientific research: Licensing and copyright.
Computing in Science and Engineering, 11(1):35–40, 2009.

[26] V. Stodden. The Scientific Method in Practice: Reproducibility in the Computational Sciences.
Technical Report Working Paper 4773-10, MIT Sloan School of Management, Feb. 2010.

[27] V. Stodden, C. Hurlin, and C. Perignon. Runmycode.org: A novel dissemination and collabo-
ration platform for executing published computational results. In eScience, pages 1–8. IEEE
Computer Society, 2012.

[28] V. Stodden, I. Mitchell, and R. LeVeque. Reproducible research for scientific computing: Tools
and strategies for changing the culture. Computing in Science and Engineering, 14(4):13–17,
2012.

[29] P. Vandewalle, J. Kovacevic, and M. Vetterli. Reproducible research in signal processing -
what, why, and how. IEEE Signal Processing Magazine, 26(3):37–47, May 2009.

[30] J. Vitek and T. Kalibera. Repeatability, reproducibility, and rigor in systems research. In
Proceedings of the ninth ACM international conference on Embedded software, EMSOFT ’11,
pages 33–38, New York, NY, USA, 2011. ACM.

A Anecdotes

A.1 Anecdote 1

In 2001 the first author (Collberg) asked some colleagues at a major corporate research lab for
access to a system which, eventually, would be published in a highly-regarded workshop:

... Do you have software available for us to play with?

The response was negative:

47

As you may guess, implementations of our papers (even the one on

〈TECHNIQUE〉) may not be made available. At least the

〈TECHNIQUE〉 has a chance to be accessible via applications that

may use it in whatever form.

Sorry about that.

As a result, our students spent a year re-implementing their system, making “reasonable” inferences
in the many cases when the paper was unclear, in order to repudiate the purported results. Our
conclusions were eventually published [8]. However, because of the many implementation details
that were glossed over in the original paper, it is highly likely that we did not faithfully reproduce
the original system, and this diminishes the value of our results.

A.2 Anecdote 2

During 2012 the first author (Collberg) together with colleagues submitted a paper to a series of
security conferences: IEEE Security and Privacy, CCS, and USENIX Security. In the paper we
showed a new attack against a defense that had been published in a top-tier security conference.14

The reviewers of all three conferences pointed to a number of problems with the paper and it was
ultimately rejected. One problem, in particular, was a less-than-conclusive security evaluation:

It is unfortunate that 〈MAIN STUDENT〉 et al. did not make

their tool publicly available, and it is great that the authors in

this paper promise to make their tools available.

The evaluation has a "built here" flavor--both the implementation and

analysis parts were done by the authors without relying on

experimental standards or using other implementations or benchmarks in

a significant way. This to me is a major threat to validity.

Interesting area to explore and useful tools to build, but overall

somewhat less than conclusive, the deployment is not seriously

considered, and the evaluation is of an "internal" kind, lacking

external benchmarks or tools that are compared directly.

2. The security evaluation does not sufficiently justify/support the

claim (in the abstract) that their new tool is resistant to known

attacks against obfuscation techniques

The problem was that we did not have access to 〈SYSTEM-R〉 and were not able to pitch it against
our own tool, 〈SYSTEM-D〉, in order to prove, conclusively, that we would overcome the techniques
published in 〈PAPER〉. We thus had to resort to a hand-wavy security argument which the reviewers
did not find convincing.

14In the following, we use 〈CONFERENCE〉 as the name of the conference in which this paper was published,
〈PAPER〉 as the title of the paper, 〈SYSTEM-R〉 as the name of the system described in the paper, and 〈MAIN
STUDENT〉, 〈SECOND STUDENT〉, 〈JUNIOR PROFESSOR〉, 〈PROFESSOR〉 as the authors. 〈UNIVERSITY〉 is the
name of the public university at which the authors were studying/employed, at a top-10 Computer Science Depart-
ment. 〈COMPANY〉 is the name of the company where 〈MAIN STUDENT〉 is now employed. 〈SYSTEM-D〉 is the
name of the system we built and tried to publish.

48

A.2.1 First Emails

On October 14, 2012 we had sent this email to the authors:

Hi!

I’m Christian Collberg from the University of Arizona. I was

wondering if you have a copy of 〈SYSTEM-R〉 that we could

try out? We have a new 〈SYSTEM〉 and I’d like to see how

well your system handles our 〈TECHNIQUES〉.

Thank you!

Christian

Three of the four email addresses extracted from the author list in the paper failed, the fourth, to
〈PROFESSOR〉, appeared to work. We received no response.

On February 19, 2013, we tried again:

Hi again!

I’m Christian Collberg from the University of Arizona. I wrote

to you earlier to see if I could have a copy of 〈SYSTEM-R〉 so

that we could try it out, but never received a reply. We have a

new 〈SYSTEM〉 and I’d like to see how well your system handles

our 〈TECHNIQUES〉.

Again, we received no response from 〈PROFESSOR〉, and the remaining addresses still bounced, as
expected.

A.2.2 Trying to Reimplement

By September we had gotten frustrated with the situation, and decided to go ahead and reimplement
〈SYSTEM-R〉 ourselves. We started reading the conference paper, the technical report on which it
was based, and 〈MAIN STUDENT〉’s PhD thesis in earnest, and painstakingly tried to reproduce
their implementation. We soon ran into some problems, and on September 11, 2013 we sent the
following email:

49

Hi!

I’m attempting to reimplement 〈SYSTEM-R〉, and as I’m working my way through

the 〈PAPER〉 and tech-report, I have come across some issues that

I hope you would be able to help me with:

1) [...]

2) [...]

3) In algorithm 2, in the 〈PAPER〉, in the

Initialization step, you write 〈FORMULA INVOLVING σ〉
where σ isn’t defined In the tech report you write for

the same step 〈DIFFERENT FORMULA INVOLVING σ〉.

Can you enlighten me as to what is going on in this step?

4) [...]

5) In ... Section 〈SECTION〉 you write 〈FORMULA〉
... [which] doesn’t typecheck. Did you mean

〈DIFFERENT FORMULA〉
?

6) The function 〈FUNCTION〉 appears to be defined in Section 〈SECTION〉
but never used.

Thank you for your help,

Christian Collberg

This time we had spent significant effort tracking down working email addresses. As it turns out,
both students and the junior faculty member had left for industrial research positions, and, appar-
ently, had not had their email forwarded. We found email addresses from 〈SECOND STUDENT〉
and 〈JUNIOR PROFESSOR〉 and on September 12, 2013, we received the following response from
〈JUNIOR PROFESSOR〉:

I’m going to redirect you to 〈MAIN STUDENT〉, as he was the [then-] grad

student who did the actual work. We haven’t stayed in touch and I don’t

have his current email address, but you can probably ping him over

LinkedIn: 〈URL〉

We tried to connect with 〈MAIN STUDENT〉 on LinkedIn, but he would not respond.
Later the same day, we received a second clarifying email from 〈JUNIOR PROFESSOR〉:

50

I unfortunately have few recollections of the work. I just went and pulled

up a PDF of the online tech report, and it was a bit like seeing a new

paper for the first time. I wasn’t able to immediately see answers to your

questions, and if I sat down to reread it all again, I’d probably just end

up with the same questions you asked and no new answers.

〈MAIN STUDENT〉’s writing style had a tendency to be verbose,

so we were continually pruning. That may have impacted the final

result given things like missing sigma definitions. Apologies

if we accidentally deleted some important bits.

Last I knew (which was several years ago), he was in 〈RESEARCHER’s〉 group

at 〈COMPANY〉. You might try reaching him via 〈RESEARCHER〉.

I’d also consider him to be a member of the 〈UNIVERSITY〉’s
PTSDa club. He may be

deliberately ignoring communication related to 〈UNIVERSITY〉.

aPostTraumatic Stress Disorder.

On September 19, 2013, we found the main student’s corporate email address by strong-arming
an acquaintance also working at 〈COMPANY〉, who was not supposed to hand it out. On September
16, 2013, satisfied that we finally had a working email address for the main author of the paper, we
sent 〈MAIN STUDENT〉 a query for the code and a request to clear up the confusions in the paper.
We received no reply.

A.2.3 Formal Request for Source Code

We next made a formal request to 〈PROFESSOR〉 under the open records act of the state in which
〈UNIVERSITY〉 is located:

51

Dear Prof. 〈PROFESSOR〉,

My name is Christian Collberg, and I’m a Professor

of Computer Science at the University of Arizona.

I have on several occasions emailed you and your

research group asking for code, data, and information

related to the 〈SYSTEM-R〉 project. I have received no response

from you.

I am therefore making a formal request under the

〈STATE〉 OPEN RECORDS ACT

〈URL〉
for

ALL SOURCE CODE, NOTES, AND TEST DATA

RELATED TO THE 〈SYSTEM-R〉 SYSTEM

as published in

* 〈PAPER〉
* 〈TECHNICAL REPORT〉
* 〈PHD THESIS〉

and supported under federal grants

* 〈MILITARY AGENCY〉 GRANT #...

* 〈NSF GRANT #. . . 〉
* 〈NSF GRANT #. . . 〉

Note that the 2005 NSF Grant Policy Manual

http://www.nsf.gov/pubs/manuals/gpm05_131/gpm7.jsp#734

under which your grants were funded, states that

b) Investigators are expected to share with other researchers, at no

more than incremental cost and within a reasonable time, the primary

data, samples, physical collections and other supporting materials

created or gathered in the course of work under NSF grants. Grantees

are expected to encourage and facilitate such sharing.

c) Investigators and grantees are encouraged to share software and

inventions created under the grant or otherwise make them or their

products widely available and usable.

I am willing to pay applicable fees. These records are sought in

furtherance of scholarly research, and I am employed by an Educational,

Non-commercial Scientific Institution. Therefore, I ask that fees,

other than duplication fees, be waived.

Thank you,

Prof. Christian Collberg

〈ADDRESS, EMAIL, PHONE〉
CC: 〈DEPARTMENT CHAIR〉

No response was forthcoming within the 3 day limit imposed by the statute, so on September
23, 2013 we sent a request to 〈UNIVERSITY〉’s legal department:

52

http://www.nsf.gov/pubs/manuals/gpm05_131/gpm7.jsp#734

Dear Sir/Madam,

My name is Christian Collberg, and I’m a Professor

of Computer Science at the University of Arizona.

Last week I made a request to Prof. 〈PROFESSOR〉 of

the Computer Science Department at 〈UNIVERSITY〉.
Please see below. It has been over 3 days, and I have

yet to receive a response. I wonder if you could let me

know what further steps I can take.

On September 24, 2013 we received the following response:

Dear Dr. Colberg:

The Office of Legal Affairs at 〈UNIVERSITY〉 has

received your Open Records Act Request, dated September 16, 2013,

appearing below. We understand your request to be seeking:

"ALL SOURCE CODE, NOTES, AND TEST DATA

RELATED TO THE 〈SYSTEM-R〉 SYSTEM"

The requested records have not been located. We are still in the

process of checking with additional personnel within the 〈UNIVERSITY〉.
However, to the extent such records may exist, they will not be

produced pursuant to 〈OPEN RECORDS STATUTE〉. Please let me know if you have any

questions or concerns. We will let you know if there are any such

records in existence as soon as possible. Thank you.

The provision of the 〈OPEN RECORDS STATUTE〉 the preceding email refers to states that:

Any data, records, or information developed, collected, or

received by or on behalf of faculty, staff, employees, or students

of an institution of higher education or any public or private

entity supporting or participating in the activities of an

institution of higher education in the conduct of, or as a result

of, study or research on medical, scientific, technical, scholarly,

or artistic issues, whether sponsored by the institution alone or in

conjunction with a governmental body or private entity, until such

information is published, patented, otherwise publicly disseminated,

or released to an agency whereupon the request must be made to the

agency. This paragraph shall apply to, but shall not be limited to,

information provided by participants in research, research notes and

data, discoveries, research projects, methodologies, protocols, and

creative works;

On September 24, 2013, we replied to the 〈UNIVERSITY〉 legal department with the following
email:

53

I am confused by your statement

"We are still in the process of checking with additional personnel within

the 〈UNIVERSITY〉. However, to the extent such records may

exist, they will not be produced pursuant to 〈OPEN RECORDS STATUTE〉."

〈OPEN RECORDS STATUTE〉 states that:

Any data, records, or information developed, collected, or

received by or on behalf of faculty, staff, employees, or students of

an institution of higher education or any public or private entity

supporting or participating in the activities of an institution of

higher education in the conduct of, or as a result of, study or

research on medical, scientific, technical, scholarly, or artistic

issues, whether sponsored by the institution alone or in conjunction

with a governmental body or private entity, until such information is

published, patented, otherwise publicly disseminated, or released to

an agency whereupon the request must be made to the agency. This

paragraph shall apply to, but shall not be limited to, information

provided by participants in research, research notes and data,

discoveries, research projects, methodologies, protocols, and creative

works;

Since the information we’re requesting has been published the clause

"until such information is published, patented, otherwise publicly

disseminated" applies, and the information should be released. The

clause "or released to an agency whereupon the request must be made to

the agency" does not apply since what was released to 〈MILITARY AGENCY〉 appears to

be the following technical report

〈FINAL REPORT RELEASED TO MILITARY AGENCY〉

which does not include the source code of the 〈SYSTEM-R〉 system, which we

are requesting, and that information should be released.

I would appreciate it if you would clear up these issues for me. Also, please

let me know what steps you are taking to locate the requested information

and when you believe this investigation will have been concluded.

On September 26, 2013, we received this response from 〈UNIVERSITY〉’s legal department:

Good afternoon,

We have been unable to locate a confirmed instance of 〈SYSTEM-R〉 source code

on any 〈UNIVERSITY〉 system. The requested records do not exist.

Please let me know if you have any additional questions or concerns.

54

A.2.4 Formal Request for Email Trail

We next sent a request for the emails between the authors, in order to trace the whereabouts of
the source code of 〈SYSTEM-R〉:

Pursuant to 〈OPEN RECORDS STATUTE〉, the Open Records Act,

I request copies of all electronic mail between

〈MAIN STUDENT〉
〈SECOND STUDENT〉
〈JUNIOR PROFESSOR〉
〈PROFESSOR〉

regarding the article

〈PAPER〉
published in

〈CONFERENCE〉
and the development of the

〈SYSTEM-R〉
system described therein.

In accordance with 〈OPEN RECORDS STATUTE〉 I request that the

electronic databases to which the following email addresses

are attached be searched:

〈UNIVERSITY EMAIL ADDRESSES〉.
I also request that any private (non-university) email accounts containing

work-related emails be searched.

I am willing to pay applicable fees. These records are sought in

furtherance of scholarly research, and I am employed by an Educational,

Non-commercial Scientific Institution. Therefore, I ask that fees,

other than duplication fees, be waived.

CC:

〈DEPARTMENT CHAIR〉

We received this reply:

55

Good morning,

The Office of Legal Affairs at 〈UNIVERSITY〉 has

received your 〈OPEN RECORDS STATUTE〉 request appearing below. We understand

your request to be seeking:

all electronic mail between

〈MAIN STUDENT〉
〈SECOND STUDENT〉
〈JUNIOR PROFESSOR〉
〈PROFESSOR〉

regarding the article

〈PAPER〉
published in

〈CONFERENCE〉
of the

〈SYSTEM-R〉
System [source code] described therein

To the extent that any such records may exist, they will not be produced

pursuant to 〈OPEN RECORDS STATUTE〉

〈PARALEGAL, OFFICE OF LEGAL AFFAIRS〉

This message is intended to be used exclusively by the addressee(s).

Unauthorized disclosure or use of this information is strictly prohibited.

If you have received this communication in error, please permanently

dispose of the original message and notify me immediately by sending an

email to 〈EMAIL ADDRESS〉

Also, please note that most communications to or from 〈UNIVERSITY〉
employees are a public record and available to the public and the media

upon request under 〈STATE〉’s broad open records law. Therefore, this

e-mail communication and any response may be subject to public disclosure.

We responded:

56

Thanks for your quick response.

> To the extent that any such records may exist, they will not be produced

> pursuant to 〈OPEN RECORDS STATUTE〉.

As you are aware, 〈OPEN RECORDS STATUTE〉 state that:

(35) Data, records, or information of a proprietary nature produced or

collected by or for faculty or staff of state institutions of higher

learning, or other governmental agencies, in the conduct of, or as a

result of, study or research on commercial, scientific, technical, or

scholarly issues, whether sponsored by the institution alone or in

conjunction with a governmental body or private concern, where such

data, records, or information has not been publicly released,

published, copyrighted, or patented;

(36) Any data, records, or information developed, collected, or

received by or on behalf of faculty, staff, employees, or students of

an institution of higher education or any public or private entity

supporting or participating in the activities of an institution of

higher education in the conduct of, or as a result of, study or

research on medical, scientific, technical, scholarly, or artistic

issues, whether sponsored by the institution alone or in conjunction

with a governmental body or private entity, until such information is

published, patented, otherwise publicly disseminated, or released to

an agency whereupon the request must be made to the agency. This

paragraph shall apply to, but shall not be limited to, information

provided by participants in research, research notes and data,

discoveries, research projects, methodologies, protocols, and creative

works;

The clause "information has not been publicly released, published,

copyrighted, or patented" is relevant here, since the 〈SYSTEM-R〉 system

has been published. Hence, information about this system, such as

research notes, contained, as in this case, in emails, is public

record and subject to disclosure. The clause "released to an agency

whereupon the request must be made to the agency" does *not* apply

since, what was released to the NSF/〈MILITARY AGENCY〉 was research reports, and not

source code and research notes.

I must therefore reiterate my request for emails between the authors

related to the 〈SYSTEM-R〉 system to be released.

> Also, please note that most communications to or from 〈UNIVERSITY〉
> employees are a public record and available to the public and the media

> upon request under 〈STATE〉’s broad open records law. Therefore, this

> e-mail communication and any response may be subject to public disclosure.

:)

Best wishes,

Christian Collberg

57

On October 8, 2013, we received the final communication:

Dr. Collberg:

The Office of Legal Affairs at 〈UNIVERSITY〉 has

received your renewed/reiterated Open Records Act request below, dated

October 3, 2013. We understand your request to be seeking emails

to/from 〈PROFESSOR〉, 〈MAIN STUDENT〉, 〈SECOND STUDENT〉, 〈JUNIOR PROFESSOR〉
‘‘related to the 〈SYSTEM-R〉 system’’.

To the extent that responsive records may exist, we estimate a total

cost of $2,263.66* to search for, retrieve, redact and produce such

records. There will also be a charge of $.10 per copy for any paper

copies that you would like to receive. Please note that we will not

produce any records, or portions of records, that are exempted

pursuant to 〈OPEN RECORDS STATUTE〉, including but not limited to 〈subclause〉.

If you would like to proceed with your request, please provide your

check payable to ‘‘〈UNIVERSITY〉’’ for $2,263.66.

Please note that you will be charged the actual cost, regardless of

whether it is more or less than the estimated amount.

**8 hrs @ $34.04 search/retrieval

37 hrs @53.82 review/redact records

〈PARALEGAL, OFFICE OF LEGAL AFFAIRS〉

We did not take up the 〈UNIVERSITY〉 on their offer, since we believed the charges requested
were not reasonable under the 〈OPEN RECORDS STATUTE〉, which states:

(c)(1) An agency may impose a reasonable charge for the search,

retrieval, redaction, and production or copying costs for the

production of records pursuant to this article. An agency shall

utilize the most economical means reasonably calculated to identify

and produce responsive, non excluded documents. Where fees for

certified copies or other copies or records are specifically

authorized or otherwise prescribed by law, such specific fee shall

apply when certified copies or other records to which a specific fee

may apply are sought. In all other instances, the charge for the

search, retrieval, or redaction of records shall not exceed the

prorated hourly salary of the lowest paid full-time employee who, in

the reasonable discretion of the custodian of the records, has the

necessary skill and training to perform the request; provided,

however, that no charge shall be made for the first quarter hour.

A.2.5 Request for the NSF grant application

We made a formal request to the NSF for the two applications of the grants that supported the
research. In one, the Principal Investigator (〈PROFESSOR〉 in the discussion above) writes:

58

We wil also make our data and software available to the research

community when appropriate.

We never received any communication from 〈PROFESSOR〉, in particular no explanation as to why
releasing the code might not have been “appropriate.”

B Data for Individual Venues

We here give the diagrams for individual venues. The abbreviations are the same as in Table ??:
HW=Requires special hardware; NC=Not backed by code; EX=Excluded due to overlapping au-
thor lists; BC=Backed by code; EMyes=Author provides code after being emailed; EMno=Author
responds to email that code cannot be provided; EM∅=Author does not respond to email within
reasonable time; OK≤30=We succeed to build in ≤ 30 minutes; OK>30=We succeed to build in
> 30 minutes; OKAuth=We fail to build, but the author says the code builds.

Table 8: Results for individual publications.

TISSEC

13

NC
6

HW
1

6

Article
3

Web
0

EMyes

1

EX
0

4

OK≤30

2
OK>30

0

OKAuth

2

Build
fails

0

2

EMno

2
EM∅

0

59

TACO

60

NC
3

HW
18

39

Article
7

Web
2

EMyes

6

EX
2

15

OK≤30

8

OK>30

2

OKAuth

2

Build
fails

3

22

EMno

17EM∅

5

TODS
29

NC
12

HW
0

17

Article
1

Web
3

EMyes

3

EX
2

7

OK≤30

6 OK>30

1

OKAuth

0

Build
fails

0

8

EMno

3

EM∅

5

OSDI

24

NC
0

HW
0

24

Article
4

Web
4 EMyes

2

EX
7

10

OK≤30

7 OK>30

3
OKAuth

0

Build
fails

0

7

EMno

7

EM∅

0

60

SIGMOD

46

NC
0

HW
1

45

Article
3

Web
6

EMyes

8

EX
19

17

OK≤30

11 OK>30

3

OKAuth

3

Build
fails

0

9

EMno

8
EM∅

1

ASPLOS

36

NC
2

HW
4

30

Article
2

Web
0

EMyes

6

EX
7

8

OK≤30

4

OK>30

3
OKAuth

1

Build
fails

0

15

EMno

14

EM∅

1

61

OOPSLA

73

NC
12 HW

0

61

Article
29

Web
3

EMyes

10

EX
5

42

OK≤30

21 OK>30

17
OKAuth

2

Build
fails

2

14

EMno

13
EM∅

1

TOPLAS

16

NC
5

HW
0

11

Article
7

Web
1

EMyes

1

EX
2

9

OK≤30

4
OK>30

4
OKAuth

0

Build
fails

1

PLDI

48

NC
1

HW
0

47

Article
9 Web

6
EMyes

10

EX
7

25

OK≤30

9

OK>30

13
OKAuth

3

Build
fails

0

15

EMno

14

EM∅

1

62

SOSP

27

NC
1

HW
0

26

Article
3

Web
4 EMyes

3

EX
6

10

OK≤30

3

OK>30

3
OKAuth

2

Build
fails

2

10

EMno

9

EM∅

1

VLDB

141

NC
7

HW
0

134

Article
10

Web
19

EMyes

22

EX
30

51

OK≤30

37 OK>30

7

OKAuth

6

Build
fails

1

53

EMno

42
EM∅

11

63

TOCS

13

NC
0

HW
1

12

Article
3 Web

2 EMyes

0

EX
0

5

OK≤30

2

OK>30

3
OKAuth

0

Build
fails

0

7

EMno

5EM∅

2

CCS

75

NC
14 HW

5

56

Article
4

Web
4

EMyes

15

EX
19

23

OK≤30

16 OK>30

5

OKAuth

2

Build
fails

0

14

EMno

12
EM∅

2

64

NSF

252

NC
15

HW
11

226

Article
36

Web
25

EMyes

43

EX
57

104

OK≤30

55
OK>30

31
OKAuth

14

Build
fails

4

65

EMno

54
EM∅

11

No NSF

349

NC
48 HW

19

282

Article
49

Web
29

EMyes

44

EX
49

122

OK≤30

75
OK>30

33
OKAuth

9

Build
fails

5

111

EMno

92
EM∅

19

Academic

409

NC
47

HW
20

342

Article
66 Web

43
EMyes

69

EX
64

178

OK≤30

102 OK>30

51
OKAuth

20

Build
fails

5

100

EMno

81
EM∅

19

65

Joint

148

NC
8

HW
8

132

Article
13

Web
11

EMyes

16

EX
36

40

OK≤30

24
OK>30

11
OKAuth

1

Build
fails

4

56

EMno

48
EM∅

8

Industrial

44

NC
8 HW

2

34

Article
6 Web

0

EMyes

2

EX
6

8

OK≤30

4

OK>30

2

OKAuth

2

Build
fails

0

20

EMno

17
EM∅

3

C Author Survey

Below, we show the survey questions that were sent to every author in order to help verify our
results. The actual survey was taken on-line through surveymoz.com.

Study on Repeatability in Computer Systems Research

Dear author, Over the last year we have conducted a study into the extent to which Computer
Systems researchers share their research artifacts, and whether published code builds. In fact, you
may have received an email from us asking for the code related to your paper or you might have

66

surveymoz.com

come across our website reproducibility.cs.arizona.edu or even read our (very preliminary)
technical report http://reproducibility.cs.arizona.edu/tr.pdf. In our study we looked for
code related to papers published in ACM conferences and journals, and, if found, tried to build it.
To make sure that our results are as accurate as possible, please answer the following questionnaire
related to your paper.

Note that, unless otherwise specified, we will consider the answers you give
to be public, i.e. we reserve the right to publish them on our website and
in other publications. In the last section of this questionnaire there is an
opportunity for you to provide us with confidential feedback.

In this study, we’re measuring what we call ”weak repeatability.” We say a
project is weakly repeatable if is backed by code, this code is made available
to the public, and it builds. In this context, THEORETICAL means that no
source code was written for the project. PRACTICAL means that source
code was written; this could include C/Java/... code to build an actual
application, but also Bash/Python/... scripts used to process collected data,
etc.. In other words, a PRACTICAL paper is one where the results in the
paper in some way depend on the correctness of software written for the
project; a THEORETICAL paper is one for which this is not the case. [This
comment was added to the survey September 16, 21:24 UTC.]15

We appreciate your help,
Christian Collberg
Todd Proebsting

Classifying the paper

We classified each paper as being PRACTICAL (the results in the paper are, at least partially,
backed by code); THEORETICAL (the results in the paper are not backed by code); or HARD-
WARE (the results in the paper are based on special hardware - not available to us and most
typical researchers).

1) Please indicate what you believe the correct classification should be. If your paper is best
classified as HARDWARE or THEORETICAL, you are finished, and we will take you to the end
of the survey.

• PRACTICAL
• THEORETICAL
• HARDWARE

If your classification is different from ours, please explain:

Finding the code

We tried to find the code related to your paper through links embedded in the paper (if any), by
looking at your website, by checking common code repositories such as GitHub, by doing a web
search, or by sending you email.

15The initial responses we received to the survey indicated a confusion with respect to our use of the terms
“THEORETICAL and “PRACTICAL.” In our study, these mean “not backed by code” and “backed by code,”
respectively, but, they have very different connotation for many researchers. We therefore attached a clarification to
the survey.

67

reproducibility.cs.arizona.edu
http://reproducibility.cs.arizona.edu/tr.pdf

2) Have you published the code related to your paper, i.e. made it public by posting on your
website, GitHub/Sourceforge/..., or making it available through email requests?

• Yes
• No

3) Is your published code identical to the version that you ran to get the results in the paper
(ignoring inconsequential bug fixes)?

• Yes
• No, but it is possible to make that version available
• No, and it is not possible to make that version available

Comments:

4) Did we, in fact, find your published code? (The email linking to this survey contains the location
where we found the code.)

• Yes
• No

If your answer is ”no”, please point us to the correct location:

Building the code

We made two attempts to build any code that we found. First, our students were given a maximum
of 30 minutes to attempt to build the code. If that failed, a (mostly) different group would spend
an ”unbounded” amount of time to try to build, until they succeeded or we felt no more progress
could be made. (The email that links to this survey contains the result of our effort.)

5) Which of the following best describes your code:

• I believe the code you downloaded can be built with reasonable effort
• I believe the code you downloaded may have had problems that would prevent

it from being easily built
• Other (please specify):

Comments:

6) If we failed to build your code, but you believe your code should build, please have a look at our
build notes (the link is in the email you just received) and give us a hint as to what we might have

done wrong!

Comments

7) Provide any comments you’d like publicly attributed to you, including as part of our database
of results regarding your work. I.e., we will link these to your row in the data table on our web
site. We reserve the right to sanitize any html and remove any offensive language.

8) Provide any comments we may publish anonymously, but which will be excluded from our
database of results regarding your work. I.e. we may quote these on our web site or use them in
future publications or presentations, but we will anonymize them.

68

	Introduction
	This Study
	History of this Document
	Definitions
	Weak Repeatability
	Caveats

	Related Work
	Empirical Studies into Reproducibility
	Public Repositories of Code and Data
	Processes, Procedures, and Publication Practices
	Licensing Frameworks
	Reproducibility vs. Repeatability

	Process
	Study Design Goals, Constraints, and Ethics
	Phase 1: Paper Analysis
	Phase 2: Email Requests
	Phase 3: Fast Build
	Phase 4: Extensive Build
	Phase 5: Author Survey
	Detailed Workflow

	Results
	Does NSF Funding Affect Sharing?
	Does Industry Involvement Affect Sharing?
	Reasons Why Code Cannot be Shared
	Versioning Problems
	Code Will be Available Soon
	No Intention to Release
	Programmer Left
	Bad Backup Practices
	Commercial Code
	Proprietary Academic Code
	Industrial Lab Issues
	Unavailable Subsystems
	Multiple Reasons
	Intellectual Property
	Research vs. Sharing
	Security and Privacy
	Design Issues
	Too Busy to Help

	Feedback on the Study
	Methodological Issues: ``You Should have been More transparent!''
	Methodological Issues: ``You Should have used a Different Measure of Repeatability!''
	Methodological Issues: ``You Should have Asked for Assistance!''
	Methodological Issues: ``You Should have used the Latest Version!''
	Methodological Issues: ``You Should have used the Binary Instead!''
	Methodological Issues: ``You Should Sign this License Agreement!''
	Critique Against Individual Results
	Reproducibility and Repeatability: ``It's Important!''
	Reproducibility and Repeatability: ``It's Difficult!''
	Reasons for not Being Able to Share

	Recommendations
	Syntax of Sharing Specifications
	Example Sharing Specifications
	Lessons Learned

	Discussion
	Putting it all Together
	Proposals for Improving Sharing

	Anecdotes
	Anecdote 1
	Anecdote 2
	First Emails
	Trying to Reimplement
	Formal Request for Source Code
	Formal Request for Email Trail
	Request for the NSF grant application

	Data for Individual Venues
	Author Survey

